
G
Creating Documentation with javadoc

G.1 Introduction
In this appendix, we provide an introduction to javadoc—a tool used to create HTML
files that document Java code. This tool is used by Sun to create the Java API documenta-
tion (Fig. G.1). We discuss the special Java comments and tags required by javadoc to cre-
ate documentation based on your source code and how to execute the javadoc tool. For
detailed information on javadoc, visit the javadoc home page at

G.2 Documentation Comments
Before HTML files can be generated with the javadoc tool, programmers must insert spe-
cial comments—called documentation comments—into their source files. Documenta-
tion comments are the only comments recognized by javadoc. Documentation comments
begin with /** and end with */. Like traditional comments, documentation comments
can span multiple lines. An example of a simple documentation comment is

Like other comments, documentation comments are not translated into bytecodes.
Because javadoc is used to create HTML files, documentation comments can contain
HTML tags. For example, the documentation comment

contains the HTML bold tags and . In the generated HTML files,
MySort will appear in bold. As we’ll see, javadoc tags can also be inserted into the docu-
mentation comments to help javadoc document your source code. These tags—which be-
gin with an @ symbol—are not HTML tags.

http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/
 index.html

/** Sorts integer array using MySort algorithm */

/** Sorts integer array using MySort algorithm */

jhtp_appG_UsingJavadoc.fm Page 1 Tuesday, April 10, 2018 9:39 AM

G_2 Chapter G Creating Documentation with javadoc

G.3 Documenting Java Source Code
In this section, we document a modified version of the Time2 class from Fig. 8.5 using
documentation comments. In the text that follows the example, we thoroughly discuss
each of the javadoc tags used in the documentation comments. In the next section, we
discuss how to use the javadoc tool to generate HTML documentation from this file.

1 // Fig. G.1: Time.java
2 // Time class declaration with overloaded constructors.
3 package com.deitel; // place Time in a package
4
5
6
7
8
9

10 public class Time
11 {
12 private int hour; // 0 - 23
13 private int minute; // 0 - 59
14 private int second; // 0 - 59
15
16 /**
17 * Time no-argument constructor initializes each instance variable
18 * to zero. This ensures that Time objects start in a consistent state
19 * @throws IllegalArgumentException In the case of an invalid time
20 */
21 public Time()
22 {
23 this(0, 0, 0); // invoke constructor with three arguments
24 }
25
26
27
28
29
30
31 public Time(int hour)
32 {
33 this(hour, 0, 0); // invoke constructor with three arguments
34 }
35
36 /**
37 * Time constructor
38 * @param hour the hour
39 * @param minute the minute
40 * @throws IllegalArgumentException In the case of an invalid time
41 */
42
43 {
44
45 }

Fig. G.1 | Java source code file containing documentation comments. (Part 1 of 4.)

/**
 * This class maintains the time in 24-hour format.
 * @see java.lang.Object
 * @author Deitel & Associates, Inc.
 */

/**
 * Time constructor
 * @param hour the hour
 * @throws Exception In the case of an invalid time
 */

public Time(int hour, int minute)

this(hour, minute, 0); // invoke constructor with three arguments

jhtp_appG_UsingJavadoc.fm Page 2 Tuesday, April 10, 2018 9:39 AM

G.3 Documenting Java Source Code G_3

46
47 /**
48 * Time constructor
49 * @param hour the hour
50 * @param minute the minute
51 * @param second the second
52 * @throws IllegalArgumentException In the case of an invalid time
53 */
54 public Time(int hour, int minute, int second)
55 {
56 if (hour < 0 || hour >= 24)
57 throw new IllegalArgumentException("hour must be 0-23");
58
59 if (minute < 0 || minute >= 60)
60 throw new IllegalArgumentException("minute must be 0-59");
61
62 if (second < 0 || second >= 60)
63 throw new IllegalArgumentException("second must be 0-59");
64
65 this.hour = hour;
66 this.minute = minute;
67 this.second = second;
68 }
69
70 /**
71 * Time constructor
72 * @param time A Time object with which to initialize
73 * @throws IllegalArgumentException In the case of an invalid time
74 */
75 public Time(Time time)
76 {
77 // invoke constructor with three arguments
78 this(time.getHour(), time.getMinute(), time.getSecond());
79 }
80
81
82
83
84
85
86
87
88
89
90
91
92 public void setTime(int hour, int minute, int second)
93 {
94 if (hour < 0 || hour >= 24)
95 throw new IllegalArgumentException("hour must be 0-23");
96
97 if (minute < 0 || minute >= 60)
98 throw new IllegalArgumentException("minute must be 0-59");

Fig. G.1 | Java source code file containing documentation comments. (Part 2 of 4.)

/**
 * Set a new time value using universal time. Perform
 * validity checks on the data. Set invalid values to zero.
 * @param hour the hour
 * @param minute the minute
 * @param second the second
 * @see com.deitel.Time#setHour
 * @see Time#setMinute
 * @see #setSecond
 * @throws Exception In the case of an invalid time
 */

jhtp_appG_UsingJavadoc.fm Page 3 Tuesday, April 10, 2018 9:39 AM

G_4 Chapter G Creating Documentation with javadoc

99
100 if (second < 0 || second >= 60)
101 throw new IllegalArgumentException("second must be 0-59");
102
103 this.hour = hour;
104 this.minute = minute;
105 this.second = second;
106 }
107
108 /**
109 * Sets the hour.
110 * @param hour the hour
111 * @throws IllegalArgumentException In the case of an invalid hour
112 */
113 public void setHour(int hour)
114 {
115 if (hour < 0 || hour >= 24)
116 throw new IllegalArgumentException("hour must be 0-23");
117
118 this.hour = hour;
119 }
120
121 /**
122 * Sets the minute.
123 * @param minute the minute
124 * @throws IllegalArgumentException In the case of an invalid minute
125 */
126 public void setMinute(int minute)
127 {
128 if (minute < 0 && minute >= 60)
129 throw new IllegalArgumentException("minute must be 0-59");
130
131 this.minute = minute;
132 }
133
134 /**
135 * Sets the second.
136 * @param second the second.
137 * @throws Exception In the case of an invalid second
138 */
139 public void setSecond(int second)
140 {
141 if (second >= 0 && second < 60)
142 throw new IllegalArgumentException("second must be 0-59");
143
144 this.second = second;
145 }
146
147
148
149
150

Fig. G.1 | Java source code file containing documentation comments. (Part 3 of 4.)

/**
 * Gets the hour.
 * @return an <code>integer</code> specifying the hour.
 */

jhtp_appG_UsingJavadoc.fm Page 4 Tuesday, April 10, 2018 9:39 AM

G.3 Documenting Java Source Code G_5

Documentation comments are placed on the line before a class declaration, an inter-
face declaration, a constructor, a method and a field (i.e., an instance variable or a refer-
ence). The first documentation comment (lines 5–9) introduces class Time. Line 6 is a
description of class Time provided by the programmer. The description can contain as

151 public int getHour()
152 {
153 return hour;
154 }
155
156 /**
157 * Gets the minute.
158 * @return an <code>integer</code> specifying the minute.
159 */
160 public int getMinute()
161 {
162 return minute;
163 }
164
165 /**
166 * Gets the second.
167 * @return an <code>integer</code> specifying the second.
168 */
169 public int getSecond()
170 {
171 return second;
172 }
173
174 /**
175 * Convert to String in universal-time format
176 * @return a <code>String</code> representation
177 * of the time in universal-time format
178 */
179 public String toUniversalString()
180 {
181 return String.format(
182 "%02d:%02d:%02d", getHour(), getMinute(), getSecond());
183 }
184
185 /**
186 * Convert to String in standard-time format
187 * @return a <code>String</code> representation
188 * of the time in standard-time format
189 */
190 public String toString()
191 {
192 return String.format("%d:%02d:%02d %s",
193 ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
194 getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));
195 }
196 } // end class Time

Fig. G.1 | Java source code file containing documentation comments. (Part 4 of 4.)

jhtp_appG_UsingJavadoc.fm Page 5 Tuesday, April 10, 2018 9:39 AM

G_6 Chapter G Creating Documentation with javadoc

many lines as necessary to provide a description of the class to any programmer who may
use it. Tags @see and @author are used to specify a See Also: note and an Author: note,
respectively in the HTML documentation. The See Also: note (Fig. G.2) specifies other
related classes that may be of interest to a programmer using this class. The @author tag
specifies the author of the class. More than one @author tag can be used to document mul-
tiple authors. [Note: The asterisks (*) on each line between /** and */ are not required.
However, this is the recommended convention for aligning descriptions and javadoc tags.
When parsing a documentation comment, javadoc discards all white-space characters up
to the first non-white-space character in each line. If the first non-white-space character
encountered is an asterisk, it’s also discarded.]

This documentation comment immediately precedes the class declaration—any code
placed between the documentation comment and the class declaration causes javadoc to
ignore the documentation comment. This is also true of other code structures (e.g., con-
structors, methods, instance variables.).

Fig. G.2 | See Also: note generated by javadoc.

Common Programming Error G.1
Placing an import statement between the class comment and the class declaration is a logic
error. This causes the class comment to be ignored by javadoc.

Software Engineering Observation G.1
Defining several fields in one comma-separated statement with a single comment above
that statement will result in javadoc using that comment for all of the fields.

See Also:
note

jhtp_appG_UsingJavadoc.fm Page 6 Tuesday, April 10, 2018 9:39 AM

G.3 Documenting Java Source Code G_7

The documentation comment on lines 26–30 describes one of the Time constructors.
Tag @param describes a parameter to the constructor. Parameters appear in the HTML
document in a Parameters: note (Fig. G.3) that is followed by a list of all parameters spec-
ified with the @param tag. For this constructor, the parameter’s name is hour and its
description is "the hour". Tag @param can be used only with methods and constructors.

The @throws tag specifies the exceptions thrown by this constructor. Like @param
tags, @throws tags are only used with methods and constructors. One @throws should be
supplied for each type of exception thrown by the method.

Documentation comments can contain multiple @param and @see tags. The docu-
mentation comment on lines 81–91 describes method setTime. The HTML generated for
this method is shown in Fig. G.4. Three @param tags describe the method’s parameters.
This results in one Parameters: note which lists the three parameters. Methods setHour,
setMinute and setSecond are tagged with @see to create hyperlinks to their descriptions
in the HTML document. A # character is used instead of a dot when tagging a method or
a field. This creates a link to the field or method name that follows the # character. We
demonstrate three different ways (i.e., the fully qualified name, the class name qualifica-
tion and no qualification) to tag methods using @see on lines 87–89. Line 87 uses the fully
qualified name to tag the setHour method. If the fully qualified name is not given (lines
88 and 89), javadoc looks for the specified method or field in the following order: current
class, superclasses, package and imported files.

The only other tag used in this file is @return, which specifies a Returns: note in the
HTML documentation (Fig. G.5). The comment on lines 147–150 documents method
getHour. Tag @return describes a method’s return type to help the programmer under-
stand how to use the return value of the method. By javadoc convention, programmers
typeset source code (i.e., keywords, identifiers and expressions) with the HTML tags
<code> and </code>. Several other javadoc tags are briefly summarized in Fig. G.7.

Software Engineering Observation G.2
To produce proper javadoc documentation, you must declare every instance variable on
a separate line.

Fig. G.3 | Parameters: and Throws: notes generated by javadoc.

Parameters:
note

Throws: note

jhtp_appG_UsingJavadoc.fm Page 7 Tuesday, April 10, 2018 9:39 AM

G_8 Chapter G Creating Documentation with javadoc

Good Programming Practice G.1
Changing source code fonts in javadoc tags helps code names stand out from the rest of
the description.

Fig. G.4 | HTML documentation for method setTime.

Fig. G.5 | HTML documentation for method getHour.

Click a method name to view the method description.

Returns: note

jhtp_appG_UsingJavadoc.fm Page 8 Tuesday, April 10, 2018 9:39 AM

G.4 javadoc G_9

G.4 javadoc
In this section, we discuss how to execute the javadoc tool on a Java source file to create
HTML documentation for the class in the file.

Downloading the Java Documentation
When you generate documentation with javadoc, you can link your documentation to
the Java API documentation. This is useful when your classes use features of the Java API,
such as extending an exiting class. The javadoc tool will create links to the existing classes.
To link to the Java API documentation, you should first download and extract the docu-
mentation from

You can find the documentation download under additional resources. Normally, you’d
extract the documentation into your JDK’s installation folder.

Executing javadoc from the Command Line
Like other tools, javadoc is executed from the command line. The general form of the ja-
vadoc command is

where options is a list of command-line options, packages is a list of packages the user would
like to document, sources is a list of java source files to document and @files is a list of text
files containing the javadoc options, the names of packages and/or source files to send to
the javadoc utility. [Note: All items are separated by spaces and @files is one word.]
Figure G.7 shows a Command Prompt window containing the javadoc command we
typed to generate the HTML documentation. For detailed information on the javadoc
command, visit the javadoc reference guide and examples at http://docs.oracle.com/
javase/8/docs/technotes/guides/javadoc/index.html.

javadoc tag Description

@deprecated Adds a Deprecated note. These are notes to programmers indicating that
they should not use the specified features of the class. Deprecated notes nor-
mally appear when a class has been enhanced with new and improved fea-
tures, but older features are maintained for backwards compatibility.

{@link} This allows the programmer to insert an explicit hyperlink to another
HTML document.

@since Adds a Since: note. These notes are used for new versions of a class to indi-
cate when a feature was first introduced. For example, the Java API docu-
mentation uses this to indicate features that were introduced in Java 1.5.

@version Adds a Version note. These notes help maintain version number of the soft-
ware containing the class or method.

Fig. G.6 | Some additional javadoc tags—the complete list is located at docs.oracle.com/
javase/8/docs/technotes/tools/windows/javadoc.html#javadoctags.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

javadoc options packages sources @files

jhtp_appG_UsingJavadoc.fm Page 9 Tuesday, April 10, 2018 9:39 AM

G_10 Chapter G Creating Documentation with javadoc

In Fig. G.7, the -d option specifies the directory (e.g., docs within the current folder)
where the HTML files will be stored on disk. We use the -link option so that our docu-
mentation links to Sun’s documentation (installed in the docs directory within the JDK’s
installation directory). If the Sun documentation located in a different directory, specify
that directory here; otherwise, you’ll receive an error from the javadoc tool. This creates
a hyperlink between our documentation and Sun’s documentation (see Fig. G.4, where
Java class Exception from package java.lang is hyperlinked). Without the -link argu-
ment, Exception appears as text in the HTML document—not a hyperlink to the Java
API documentation for class Exception. The -author option instructs javadoc to process
the @author tag (it ignores this tag by default).

G.5 Files Produced by javadoc
In the last section, we executed the javadoc tool on the Time.java file. When javadoc
executes, it displays the name of each HTML file it creates (see Fig. G.7). From the source
file, javadoc created an HTML document for the class named Time.html. If the source
file contains multiple classes or interfaces, a separate HTML document is created for each
class. Because class Time belongs to a package, the page will be created in the directory

The docs directory was specified with the -d command line option of javadoc, and the
remaining directories were created based on the package statement.

Fig. G.7 | Using the javadoc tool.

docs
 com
 deitel

jhtp_appG_UsingJavadoc.fm Page 10 Tuesday, April 10, 2018 9:39 AM

G.5 Files Produced by javadoc G_11

The javadoc tool also creates index.html—the starting HTML page in the docu-
mentation. To view the documentation you generate with javadoc, load index.html
from the docs directory into your web browser. In Fig. G.8, the right frame contains the
page index.html and the left frame contains the page allclasses-frame.html which
contains links to the source code’s classes. [Note: Our example does not contain multiple
packages, so there’s no frame listing the packages. Normally this frame would appear above
the left frame (containing “All Classes”), as in Fig. G.2.]

Figure G.9 shows class Time’s index.html. Click Time in the left frame to load the
Time class description. The navigation bar (at the top of the right frame) indicates which
HTML page is currently loaded by highlighting the page’s link (e.g., the Class link).

Clicking the Tree link (Fig. G.10) displays a class hierarchy for all the classes displayed
in the left frame. In our example, we documented only class Time—which extends Object.

Fig. G.8 | Index page.

Fig. G.9 | Class page.

highlighted link navigation bar

jhtp_appG_UsingJavadoc.fm Page 11 Tuesday, April 10, 2018 9:39 AM

G_12 Chapter G Creating Documentation with javadoc

Clicking the Deprecated link loads deprecated-list.html into the right frame. This page
contains a list of all deprecated names. Because we did not use the @deprecated tag in this
example, this page does not contain any information.

Clicking the Index link loads the index-all.html page (Fig. G.11), which contains
an alphabetical list of all classes, interfaces, methods and fields. Clicking the Help link loads
helpdoc.html (Fig. G.12). This is a help file for navigating the documentation. A default
help file is provided, but the programmer can specify other help files.

Among the other files generated by javadoc are serialized-form.html which doc-
uments Serializable and Externalizable classes and package-list, a text file rather
than an HTML file, which lists package names and is not actually part of the documenta-
tion. The package-list file is used by the -link command-line argument to resolve the
external cross references, i.e., allows other documentations to link to this documentation.

Fig. G.10 | Tree page.

Fig. G.11 | Index page.

jhtp_appG_UsingJavadoc.fm Page 12 Tuesday, April 10, 2018 9:39 AM

G.5 Files Produced by javadoc G_13

Fig. G.12 | Help page.

jhtp_appG_UsingJavadoc.fm Page 13 Tuesday, April 10, 2018 9:39 AM

