
JNumber Systems

O b j e c t i v e s
In this appendix you’ll:

■ Learn basic number systems
concepts, such as base,
positional value and symbol
value.

■ Learn how to work with
numbers represented in the
binary, octal and
hexadecimal number
systems.

■ Abbreviate binary numbers
as octal numbers or
hexadecimal numbers.

■ Convert octal numbers and
hexadecimal numbers to
binary numbers.

■ Convert back and forth
between decimal numbers
and their binary, octal and
hexadecimal equivalents.

■ Learn binary arithmetic and
how negative binary numbers
are represented using two’s
complement notation.

jhtp_appJ_NumberSystems.fm Page 1 Wednesday, June 21, 2017 3:33 PM

J_2 Chapter J Number Systems

J.1 Introduction
In this appendix, we introduce the key number systems that Java programmers use, espe-
cially when they’re working on software projects that require close interaction with ma-
chine-level hardware. Projects like this include operating systems, computer networking
software, compilers, database systems and applications requiring high performance.

When we write an integer such as 227 or –63 in a Java program, the number is
assumed to be in the decimal (base 10) number system. The digits in the decimal number
system are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The lowest digit is 0 and the highest digit is 9—
one less than the base of 10. Internally, computers use the binary (base 2) number system.
The binary number system has only two digits, namely 0 and 1. Its lowest digit is 0 and
its highest digit is 1—one less than the base of 2.

As we’ll see, binary numbers tend to be much longer than their decimal equivalents.
Programmers who work in assembly languages and in high-level languages like Java that
enable programmers to reach down to the machine level find it cumbersome to work with
binary numbers. So two other number systems—the octal number system (base 8) and the
hexadecimal number system (base 16)—are popular primarily because they make it con-
venient to abbreviate binary numbers.

In the octal number system, the digits range from 0 to 7. Because both the binary
number system and the octal number system have fewer digits than the decimal number
system, their digits are the same as the corresponding digits in decimal.

The hexadecimal number system poses a problem because it requires 16 digits—a
lowest digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than
the base of 16). By convention, we use the letters A through F to represent the hexadecimal
digits corresponding to decimal values 10 through 15. Thus in hexadecimal we can have
numbers like 876 consisting solely of decimal-like digits, numbers like 8A55F consisting
of digits and letters and numbers like FFE consisting solely of letters. Occasionally, a hexa-
decimal number spells a common word such as FACE or FEED—this can appear strange
to programmers accustomed to working with numbers. The digits of the binary, octal,
decimal and hexadecimal number systems are summarized in Fig. J.1 and Fig. J.2.

Each of these number systems uses positional notation—each position in which a
digit is written has a different positional value. For example, in the decimal number 937
(the 9, the 3 and the 7 are referred to as symbol values), we say that the 7 is written in the
ones position, the 3 is written in the tens position and the 9 is written in the hundreds
position. Each of these positions is a power of the base (base 10) and that these powers
begin at 0 and increase by 1 as we move left in the number (Fig. J.3).

J.1 Introduction
J.2 Abbreviating Binary Numbers as

Octal and Hexadecimal Numbers
J.3 Converting Octal and Hexadecimal

Numbers to Binary Numbers
J.4 Converting from Binary, Octal or

Hexadecimal to Decimal

J.5 Converting from Decimal to Binary,
Octal or Hexadecimal

J.6 Negative Binary Numbers: Two’s
Complement Notation

jhtp_appJ_NumberSystems.fm Page 2 Wednesday, June 21, 2017 3:33 PM

J.1 Introduction J_3

For longer decimal numbers, the next positions to the left would be the thousands
position (10 to the 3rd power), the ten-thousands position (10 to the 4th power), the hun-
dred-thousands position (10 to the 5th power), the millions position (10 to the 6th
power), the ten-millions position (10 to the 7th power) and so on.

Binary digit Octal digit Decimal digit Hexadecimal digit

0 0 0 0

1 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8

9 9

A (decimal value of 10)
B (decimal value of 11)
C (decimal value of 12)
D (decimal value of 13)
E (decimal value of 14)
F (decimal value of 15)

Fig. J.1 | Digits of the binary, octal, decimal and hexadecimal number systems.

Attribute Binary Octal Decimal Hexadecimal

Base 2 8 10 16

Lowest digit 0 0 0 0

Highest digit 1 7 9 F

Fig. J.2 | Comparing the binary, octal, decimal and hexadecimal number systems.

Positional values in the decimal number system

Decimal digit 9 3 7

Position name Hundreds Tens Ones

Positional value 100 10 1

Positional value as a
power of the base (10)

102 101 100

Fig. J.3 | Positional values in the decimal number system.

jhtp_appJ_NumberSystems.fm Page 3 Wednesday, June 21, 2017 3:33 PM

J_4 Appendix J Number Systems

In the binary number 101, the rightmost 1 is written in the ones position, the 0 is
written in the twos position and the leftmost 1 is written in the fours position. Each posi-
tion is a power of the base (base 2) and that these powers begin at 0 and increase by 1 as
we move left in the number (Fig. J.4). So, 101 = 22 + 20 = 4 + 1 = 5.

For longer binary numbers, the next positions to the left would be the eights position
(2 to the 3rd power), the sixteens position (2 to the 4th power), the thirty-twos position
(2 to the 5th power), the sixty-fours position (2 to the 6th power) and so on.

In the octal number 425, we say that the 5 is written in the ones position, the 2 is
written in the eights position and the 4 is written in the sixty-fours position. Each of these
positions is a power of the base (base 8) and that these powers begin at 0 and increase by
1 as we move left in the number (Fig. J.5).

For longer octal numbers, the next positions to the left would be the five-hundred-
and-twelves position (8 to the 3rd power), the four-thousand-and-ninety-sixes position (8
to the 4th power), the thirty-two-thousand-seven-hundred-and-sixty-eights position (8 to
the 5th power) and so on.

In the hexadecimal number 3DA, we say that the A is written in the ones position,
the D is written in the sixteens position and the 3 is written in the two-hundred-and-fifty-
sixes position. Each of these positions is a power of the base (base 16) and that these powers
begin at 0 and increase by 1 as we move left in the number (Fig. J.6).

For longer hexadecimal numbers, the next positions to the left would be the four-
thousand-and-ninety-sixes position (16 to the 3rd power), the sixty-five-thousand-five-
hundred-and-thirty-sixes position (16 to the 4th power) and so on.

Positional values in the binary number system

Binary digit 1 0 1

Position name Fours Twos Ones

Positional value 4 2 1

Positional value as a
power of the base (2)

22 21 20

Fig. J.4 | Positional values in the binary number system.

Positional values in the octal number system

Decimal digit 4 2 5

Position name Sixty-fours Eights Ones

Positional value 64 8 1

Positional value as a
power of the base (8)

82 81 80

Fig. J.5 | Positional values in the octal number system.

jhtp_appJ_NumberSystems.fm Page 4 Wednesday, June 21, 2017 3:33 PM

J.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers J_5

J.2 Abbreviating Binary Numbers as Octal and
Hexadecimal Numbers
The main use for octal and hexadecimal numbers in computing is for abbreviating lengthy
binary representations. Figure J.7 highlights the fact that lengthy binary numbers can be
expressed concisely in number systems with higher bases than the binary number system.

A particularly important relationship that both the octal number system and the hexa-
decimal number system have to the binary system is that the bases of octal and hexadec-

Positional values in the hexadecimal number system

Decimal digit 3 D A

Position name Two-hundred-and-
fifty-sixes

Sixteens Ones

Positional value 256 16 1

Positional value as a
power of the base (16)

162 161 160

Fig. J.6 | Positional values in the hexadecimal number system.

Decimal
number

Binary
representation

Octal
representation

Hexadecimal
representation

 0 0 0 0

 1 1 1 1

 2 10 2 2

 3 11 3 3

 4 100 4 4

 5 101 5 5

 6 110 6 6

 7 111 7 7

 8 1000 10 8

 9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

Fig. J.7 | Decimal, binary, octal and hexadecimal equivalents.

jhtp_appJ_NumberSystems.fm Page 5 Wednesday, June 21, 2017 3:33 PM

J_6 Appendix J Number Systems

imal (8 and 16 respectively) are powers of the base of the binary number system (base 2).
Consider the following 12-digit binary number and its octal and hexadecimal equivalents.
See if you can determine how this relationship makes it convenient to abbreviate binary
numbers in octal or hexadecimal. The answer follows the numbers.

To see how the binary number converts easily to octal, simply break the 12-digit
binary number into groups of three consecutive bits each and write those groups over the
corresponding digits of the octal number as follows:

The octal digit you’ve written under each group of three bits corresponds precisely to
the octal equivalent of that 3-digit binary number, as shown in Fig. J.7.

The same kind of relationship can be observed in converting from binary to hexadec-
imal. Break the 12-digit binary number into groups of four consecutive bits each and write
those groups over the corresponding digits of the hexadecimal number as follows:

Notice that the hexadecimal digit you wrote under each group of four bits corresponds
precisely to the hexadecimal equivalent of that 4-digit binary number as shown in Fig. J.7.

J.3 Converting Octal and Hexadecimal Numbers to
Binary Numbers
In the previous section, we saw how to convert binary numbers to their octal and hexadec-
imal equivalents by forming groups of binary digits and simply rewriting them as their
equivalent octal digit values or hexadecimal digit values. This process may be used in re-
verse to produce the binary equivalent of a given octal or hexadecimal number.

For example, the octal number 653 is converted to binary simply by writing the 6 as
its 3-digit binary equivalent 110, the 5 as its 3-digit binary equivalent 101 and the 3 as its
3-digit binary equivalent 011 to form the 9-digit binary number 110101011.

The hexadecimal number FAD5 is converted to binary simply by writing the F as its
4-digit binary equivalent 1111, the A as its 4-digit binary equivalent 1010, the D as its 4-
digit binary equivalent 1101 and the 5 as its 4-digit binary equivalent 0101 to form the
16-digit 1111101011010101.

J.4 Converting from Binary, Octal or Hexadecimal to
Decimal
We’re accustomed to working in decimal, and therefore it’s often convenient to convert a
binary, octal, or hexadecimal number to decimal to get a sense of what the number is “re-
ally” worth. Our diagrams in Section J.1 express the positional values in decimal. To con-
vert a number to decimal from another base, multiply the decimal equivalent of each digit
by its positional value and sum these products. For example, the binary number 110101
is converted to decimal 53, as shown in Fig. J.8.

Binary number Octal equivalent Hexadecimal equivalent
100011010001 4321 8D1

100 011 010 001
4 3 2 1

1000 1101 0001
8 D 1

jhtp_appJ_NumberSystems.fm Page 6 Wednesday, June 21, 2017 3:33 PM

J.5 Converting from Decimal to Binary, Octal or Hexadecimal J_7

To convert octal 7614 to decimal 3980, we use the same technique, this time using
appropriate octal positional values, as shown in Fig. J.9.

To convert hexadecimal AD3B to decimal 44347, we use the same technique, this
time using appropriate hexadecimal positional values, as shown in Fig. J.10.

J.5 Converting from Decimal to Binary, Octal or
Hexadecimal
The conversions in Section J.4 follow naturally from the positional notation conventions.
Converting from decimal to binary, octal, or hexadecimal also follows these conventions.

Suppose we wish to convert decimal 57 to binary. We begin by writing the positional
values of the columns right to left until we reach a column whose positional value is greater
than the decimal number. We don’t need that column, so we discard it. Thus, we first write:

Converting a binary number to decimal

Postional values: 32 16 8 4 2 1

Symbol values: 1 1 0 1 0 1

Products: 1*32=3
2

1*16=1
6

0*8=0 1*4=4 0*2=0 1*1=1

Sum: = 32 + 16 + 0 + 4 + 0s + 1 = 53

Fig. J.8 | Converting a binary number to decimal.

Converting an octal number to decimal

Positional values: 512 64 8 1

Symbol values: 7 6 1 4

Products 7*512=3584 6*64=384 1*8=8 4*1=4

Sum: = 3584 + 384 + 8 + 4 = 3980

Fig. J.9 | Converting an octal number to decimal.

Converting a hexadecimal number to decimal

Postional values: 4096 256 16 1

Symbol values: A D 3 B

Products A*4096=4096
0

D*256=3328 3*16=48 B*1=11

Sum: = 40960 + 3328 + 48 + 11 = 44347

Fig. J.10 | Converting a hexadecimal number to decimal.

Positional values: 64 32 16 8 4 2 1

jhtp_appJ_NumberSystems.fm Page 7 Wednesday, June 21, 2017 3:33 PM

J_8 Appendix J Number Systems

Then we discard the column with positional value 64, leaving:

Next we work from the leftmost column to the right. We divide 32 into 57 and
observe that there’s one 32 in 57 with a remainder of 25, so we write 1 in the 32 column.
We divide 16 into 25 and observe that there’s one 16 in 25 with a remainder of 9 and write
1 in the 16 column. We divide 8 into 9 and observe that there’s one 8 in 9 with a
remainder of 1. The next two columns each produce quotients of 0 when their positional
values are divided into 1, so we write 0s in the 4 and 2 columns. Finally, 1 into 1 is 1, so
we write 1 in the 1 column. This yields:

and thus decimal 57 is equivalent to binary 111001.
To convert decimal 103 to octal, we begin by writing the positional values of the col-

umns until we reach a column whose positional value is greater than the decimal number.
We do not need that column, so we discard it. Thus, we first write:

Then we discard the column with positional value 512, yielding:

Next we work from the leftmost column to the right. We divide 64 into 103 and
observe that there’s one 64 in 103 with a remainder of 39, so we write 1 in the 64 column.
We divide 8 into 39 and observe that there are four 8s in 39 with a remainder of 7 and
write 4 in the 8 column. Finally, we divide 1 into 7 and observe that there are seven 1s in
7 with no remainder, so we write 7 in the 1 column. This yields:

and thus decimal 103 is equivalent to octal 147.
To convert decimal 375 to hexadecimal, we begin by writing the positional values of

the columns until we reach a column whose positional value is greater than the decimal
number. We do not need that column, so we discard it. Thus, we first write:

Then we discard the column with positional value 4096, yielding:

Next we work from the leftmost column to the right. We divide 256 into 375 and
observe that there’s one 256 in 375 with a remainder of 119, so we write 1 in the 256
column. We divide 16 into 119 and observe that there are seven 16s in 119 with a
remainder of 7 and write 7 in the 16 column. Finally, we divide 1 into 7 and observe that
there are seven 1s in 7 with no remainder, so we write 7 in the 1 column. This yields:

and thus decimal 375 is equivalent to hexadecimal 177.

Positional values: 32 16 8 4 2 1

Positional values: 32 16 8 4 2 1
Symbol values: 1 1 1 0 0 1

Positional values: 512 64 8 1

Positional values: 64 8 1

Positional values: 64 8 1
Symbol values: 1 4 7

Positional values: 4096 256 16 1

Positional values: 256 16 1

Positional values: 256 16 1
Symbol values: 1 7 7

jhtp_appJ_NumberSystems.fm Page 8 Wednesday, June 21, 2017 3:33 PM

J.6 Negative Binary Numbers: Two’s Complement Notation J_9

J.6 Negative Binary Numbers: Two’s Complement
Notation
The discussion so far in this appendix has focused on positive numbers. In this section, we
explain how computers represent negative numbers using two’s complement notation. First
we explain how the two’s complement of a binary number is formed, then we show why
it represents the negative value of the given binary number.

Consider a machine with 32-bit integers. Suppose

The 32-bit representation of value is

To form the negative of value we first form its one’s complement by applying Java’s bitwise
complement operator (~):

Internally, ~value is now value with each of its bits reversed—ones become zeros and ze-
ros become ones, as follows:

To form the two’s complement of value, we simply add 1 to value’s one’s complement.
Thus

Now if this is in fact equal to –13, we should be able to add it to binary 13 and obtain a
result of 0. Let’s try this:

The carry bit coming out of the leftmost column is discarded and we indeed get 0 as a re-
sult. If we add the one’s complement of a number to the number, the result would be all
1s. The key to getting a result of all zeros is that the two’s complement is one more than
the one’s complement. The addition of 1 causes each column to add to 0 with a carry of
1. The carry keeps moving leftward until it’s discarded from the leftmost bit, and thus the
resulting number is all zeros.

Computers actually perform a subtraction, such as

by adding the two’s complement of value to a, as follows:

int value = 13;

00000000 00000000 00000000 00001101

onesComplementOfValue = ~value;

value:
00000000 00000000 00000000 00001101

~value (i.e., value’s ones complement):
11111111 11111111 11111111 11110010

Two’s complement of value:
11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001101
+11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00000000

x = a - value;

x = a + (~value + 1);

jhtp_appJ_NumberSystems.fm Page 9 Wednesday, June 21, 2017 3:33 PM

J_10 Appendix J Number Systems

Suppose a is 27 and value is 13 as before. If the two’s complement of value is actually the
negative of value, then adding the two’s complement of value to a should produce the re-
sult 14. Let’s try this:

which is indeed equal to 14.

a (i.e., 27) 00000000 00000000 00000000 00011011
+(~value + 1) +11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001110

jhtp_appJ_NumberSystems.fm Page 10 Wednesday, June 21, 2017 3:33 PM

