
K
Bit Manipulation

K.1 Introduction
This appendix presents an extensive discussion of bit-manipulation operators, followed by
a discussion of class BitSet, which enables the creation of bit-array-like objects for setting
and getting individual bit values. Java provides extensive bit-manipulation capabilities for
programmers who need to get down to the “bits-and-bytes” level. Operating systems, test
equipment software, networking software and many other kinds of software require that
the programmer communicate “directly with the hardware.” We now discuss Java’s bit-
manipulation capabilities and bitwise operators.

K.2 Bit Manipulation and the Bitwise Operators
Computers represent all data internally as sequences of bits. Each bit can assume the value
0 or the value 1. On most systems, a sequence of eight bits forms a byte—the standard
storage unit for a variable of type byte. Other types are stored in larger numbers of bytes.
The bitwise operators can manipulate the bits of integral operands (i.e., operations of type
byte, char, short, int and long), but not floating-point operands. The discussions of bit-
wise operators in this section show the binary representations of the integer operands.

The bitwise operators are bitwise AND (&), bitwise inclusive OR (|), bitwise exclu-
sive OR (^), left shift (<<), signed right shift (>>), unsigned right shift (>>>) and bitwise
complement (~). The bitwise AND, bitwise inclusive OR and bitwise exclusive OR oper-
ators compare their two operands bit by bit. The bitwise AND operator sets each bit in
the result to 1 if and only if the corresponding bit in both operands is 1. The bitwise inclu-
sive OR operator sets each bit in the result to 1 if the corresponding bit in either (or both)
operand(s) is 1. The bitwise exclusive OR operator sets each bit in the result to 1 if the
corresponding bit in exactly one operand is 1. The left-shift operator shifts the bits of its
left operand to the left by the number of bits specified in its right operand. The signed
right shift operator shifts the bits in its left operand to the right by the number of bits spec-
ified in its right operand—if the left operand is negative, 1s are shifted in from the left;
otherwise, 0s are shifted in from the left. The unsigned right shift operator shifts the bits
in its left operand to the right by the number of bits specified in its right operand—0s are
shifted in from the left. The bitwise complement operator sets all 0 bits in its operand to
1 in the result and sets all 1 bits in its operand to 0 in the result. The bitwise operators are
summarized in Fig. K.1.

jhtp_appK_BitManipulation.fm Page 1 Tuesday, April 11, 2017 12:28 PM

K_2 Appendix K Bit Manipulation

When using the bitwise operators, it’s useful to display values in their binary repre-
sentation to illustrate the effects of these operators. The application of Fig. K.2 allows the
user to enter an integer from the standard input. Lines 8–10 read the integer from the stan-
dard input. The integer is displayed in its binary representation in groups of eight bits
each. Often, the bitwise AND operator is used with an operand called a mask—an integer
value with specific bits set to 1. Masks are used to hide some bits in a value while selecting
other bits. In line 16, mask variable displayMask is assigned the value 1 << 31, or

Lines 19–28 obtains a string representation of the integer, in bits. Line 21 uses the bitwise
AND operator to combine variable input with variable displayMask. The left-shift oper-
ator shifts the value 1 from the low-order (rightmost) bit to the high-order (leftmost) bit
in displayMask and fills in 0 from the right.

Operator Name Description

& bitwise AND The bits in the result are set to 1 if the corresponding bits in
the two operands are both 1.

| bitwise
inclusive OR

The bits in the result are set to 1 if at least one of the cor-
responding bits in the two operands is 1.

^ bitwise
exclusive OR

The bits in the result are set to 1 if exactly one of the corre-
sponding bits in the two operands is 1.

<< left shift Shifts the bits of the left operand left by the number of bits
specified by the right operand; fill from the right with 0.

>> signed right
shift

Shifts the bits of the left operand right by the number of bits
specified by the right operand. If the left operand is negative,
1s are filled in from the left; otherwise, 0s are filled in from
the left.

>>> unsigned
right shift

Shifts the bits of the left operand right by the number of bits
specified by the second operand; 0s are filled in from the left.

~ bitwise
complement

All 0 bits are set to 1, and all 1 bits are set to 0.

Fig. K.1 | Bitwise operators.

10000000 00000000 00000000 00000000

1 // Fig. K.2: PrintBits.java
2 // Printing an unsigned integer in bits.
3 import java.util.Scanner;
4
5 public class PrintBits {
6 public static void main(String[] args) {
7 // get input integer
8 Scanner scanner = new Scanner(System.in);
9 System.out.println("Please enter an integer:");

10 int input = scanner.nextInt();

Fig. K.2 | Printing the bits in an integer. (Part 1 of 2.)

jhtp_appK_BitManipulation.fm Page 2 Tuesday, April 11, 2017 12:28 PM

K.2 Bit Manipulation and the Bitwise Operators K_3

Line 21 determines whether the current leftmost bit of variable value is a 1 or 0 and
displays '1' or '0', respectively, to the standard output. Assume that input contains
2000000000 (01110111 00110101 10010100 00000000). When input and displayMask are
combined using &, all the bits except the high-order (leftmost) bit in variable input are
“masked off” (hidden), because any bit “ANDed” with 0 yields 0. If the leftmost bit is 1, the
expression input & displayMask evaluates to 1 and line 21 displays '1'; otherwise, line 21
displays '0'. Then line 23 left shifts variable input to the left by one bit with the expression
input <<= 1. (This expression is equivalent to input = input << 1.) These steps are repeated

11
12 // display bit representation of an integer
13 System.out.println("\nThe integer in bits is:");
14
15
16
17
18 // for each bit display 0 or 1
19 for (int bit = 1; bit <= 32; bit++) {
20 // use displayMask to isolate bit
21 System.out.print();
22
23
24
25 if (bit % 8 == 0) {
26 System.out.print(' '); // display space every 8 bits
27 }
28 }
29 }
30 }

Please enter an integer:
0

The integer in bits is:
00000000 00000000 00000000 00000000

Please enter an integer:
-1

The integer in bits is:
11111111 11111111 11111111 11111111

Please enter an integer:
65535

The integer in bits is:
00000000 00000000 11111111 11111111

Fig. K.2 | Printing the bits in an integer. (Part 2 of 2.)

// create int value with 1 in leftmost bit and 0s elsewhere
int displayMask = 1 << 31;

(input & displayMask) == 0 ? '0' : '1'

input <<= 1; // shift value one position to left

jhtp_appK_BitManipulation.fm Page 3 Tuesday, April 11, 2017 12:28 PM

K_4 Appendix K Bit Manipulation

for each bit in variable input. [Note: Class Integer provides method toBinaryString,
which returns a string containing the binary representation of an integer.] Figure K.3 sum-
marizes the results of combining two bits with the bitwise AND (&) operator.

Figure K.4 demonstrates the bitwise AND operator, the bitwise inclusive OR oper-
ator, the bitwise exclusive OR operator and the bitwise complement operator. The pro-
gram uses the display method of the utility class BitRepresentation (Fig. K.5) to get a
string representation of the integer values. Notice that method display performs the same
task as lines in Fig. K.2. Declaring display as a static method of class BitRepresenta-
tion allows display to be reused by later applications. The application of Fig. K.4 asks
users to choose the operation they would like to test, gets input integer(s), performs the
operation and displays the result of each operation in both integer and bitwise representa-
tions.

Common Programming Error K.1
Using the conditional AND operator (&&) instead of the bitwise AND operator (&) is a
compilation error.

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

1 0 0

0 1 0

1 1 1

Fig. K.3 | Bitwise AND operator (&) combining two bits.

1 // Fig. K.4: MiscBitOps.java
2 // Using the bitwise operators.
3 import java.util.Scanner;
4
5 public class MiscBitOps {
6 public static void main(String[] args) {
7 int choice = 0; // store operation type
8 int first = 0; // store first input integer
9 int second = 0; // store second input integer

10 int result = 0; // store operation result
11 Scanner scanner = new Scanner(System.in); // create Scanner
12
13 // continue execution until user exit
14 while (true) {
15 // get selected operation
16 System.out.println("\n\nPlease choose the operation:");
17 System.out.printf("%s%s", "1--AND\n2--Inclusive OR\n",
18 "3--Exclusive OR\n4--Complement\n5--Exit\n");
19 choice = scanner.nextInt();

Fig. K.4 | Bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise complement
operators. (Part 1 of 4.)

jhtp_appK_BitManipulation.fm Page 4 Tuesday, April 11, 2017 12:28 PM

K.2 Bit Manipulation and the Bitwise Operators K_5

20
21 // perform bitwise operation
22 switch (choice) {
23 case 1: // AND
24 System.out.print("Please enter two integers:");
25 first = scanner.nextInt(); // get first input integer
26 BitRepresentation.display(first);
27 second = scanner.nextInt(); // get second input integer
28 BitRepresentation.display(second);
29
30 System.out.printf(
31 "\n\n%d & %d = %d", first, second, result);
32 BitRepresentation.display(result);
33 break;
34 case 2: // Inclusive OR
35 System.out.print("Please enter two integers:");
36 first = scanner.nextInt(); // get first input integer
37 BitRepresentation.display(first);
38 second = scanner.nextInt(); // get second input integer
39 BitRepresentation.display(second);
40
41 System.out.printf(
42 "\n\n%d | %d = %d", first, second, result);
43 BitRepresentation.display(result);
44 break;
45 case 3: // Exclusive OR
46 System.out.print("Please enter two integers:");
47 first = scanner.nextInt(); // get first input integer
48 BitRepresentation.display(first);
49 second = scanner.nextInt(); // get second input integer
50 BitRepresentation.display(second);
51
52 System.out.printf(
53 "\n\n%d ^ %d = %d", first, second, result);
54 BitRepresentation.display(result);
55 break;
56 case 4: // Complement
57 System.out.print("Please enter one integer:");
58 first = scanner.nextInt(); // get input integer
59 BitRepresentation.display(first);
60
61 System.out.printf("\n\n~%d = %d", first, result);
62 BitRepresentation.display(result);
63 break;
64 case 5: default:
65 System.exit(0); // exit application
66 }
67 }
68 }
69 }

Fig. K.4 | Bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise complement
operators. (Part 2 of 4.)

result = first & second; // perform bitwise AND

result = first | second; // perform bitwise inclusive OR

result = first ^ second; // perform bitwise exclusive OR

result = ~first; // perform bitwise complement on first

jhtp_appK_BitManipulation.fm Page 5 Tuesday, April 11, 2017 12:28 PM

K_6 Appendix K Bit Manipulation

Please choose the operation:
1--AND
2--Inclusive OR
3--Exclusive OR
4--Complement
5--Exit
1
Please enter two integers:65535 1

Bit representation of 65535 is:
00000000 00000000 11111111 11111111
Bit representation of 1 is:
00000000 00000000 00000000 00000001

65535 & 1 = 1
Bit representation of 1 is:
00000000 00000000 00000000 00000001

Please choose the operation:
1--AND
2--Inclusive OR
3--Exclusive OR
4--Complement
5--Exit
2
Please enter two integers:15 241

Bit representation of 15 is:
00000000 00000000 00000000 00001111
Bit representation of 241 is:
00000000 00000000 00000000 11110001

15 | 241 = 255
Bit representation of 255 is:
00000000 00000000 00000000 11111111

Please choose the operation:
1--AND
2--Inclusive OR
3--Exclusive OR
4--Complement
5--Exit
3

Please enter two integers:139 199

Bit representation of 139 is:
00000000 00000000 00000000 10001011
Bit representation of 199 is:
00000000 00000000 00000000 11000111

139 ^ 199 = 76
Bit representation of 76 is:
00000000 00000000 00000000 01001100

Fig. K.4 | Bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise complement
operators. (Part 3 of 4.)

jhtp_appK_BitManipulation.fm Page 6 Tuesday, April 11, 2017 12:28 PM

K.2 Bit Manipulation and the Bitwise Operators K_7

 The first output window in Fig. K.4 shows the results of combining the value 65535
and the value 1 with the bitwise AND operator (&; line 29). All the bits except the low-
order bit in the value 65535 are “masked off” (hidden) by “ANDing” with the value 1.

The bitwise inclusive OR operator (|) sets each bit in the result to 1 if the corre-
sponding bit in either (or both) operand(s) is 1. The second output window in Fig. K.4
shows the results of combining the value 15 and the value 241 by using the bitwise OR

Please choose the operation:
1--AND
2--Inclusive OR
3--Exclusive OR
4--Complement
5--Exit
4
Please enter one integer:21845

Bit representation of 21845 is:
00000000 00000000 01010101 01010101

~21845 = -21846
Bit representation of -21846 is:
11111111 11111111 10101010 10101010

1 // Fig K.5: BitRepresentation.java
2 // Utility class that displays bit representation of an integer.
3
4 public class BitRepresentation {
5 // display bit representation of specified int value
6 public static void display(int value) {
7 System.out.printf("\nBit representation of %d is: \n", value);
8
9 // create int value with 1 in leftmost bit and 0s elsewhere

10 int displayMask = 1 << 31;
11
12 // for each bit display 0 or 1
13 for (int bit = 1; bit <= 32; bit++) {
14 // use displayMask to isolate bit
15 System.out.print((value & displayMask) == 0 ? '0' : '1');
16
17 value <<= 1; // shift value one position to left
18
19 if (bit % 8 == 0) {
20 System.out.print(' '); // display space every 8 bits
21 }
22 }
23 }
24 }

Fig. K.5 | Utility class that displays bit representation of an integer.

Fig. K.4 | Bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise complement
operators. (Part 4 of 4.)

jhtp_appK_BitManipulation.fm Page 7 Tuesday, April 11, 2017 12:28 PM

K_8 Appendix K Bit Manipulation

operator (line 40)—the result is 255. Figure K.6 summarizes the results of combining two
bits with the bitwise inclusive OR operator.

The bitwise exclusive OR operator (^) sets each bit in the result to 1 if exactly one of
the corresponding bits in its two operands is 1. The third output window in Fig. K.4
shows the results of combining the value 139 and the value 199 by using the exclusive OR
operator (line 51)—the result is 76. Figure K.7 summarizes the results of combining two
bits with the bitwise exclusive OR operator.

The bitwise complement operator (~) sets all 1 bits in its operand to 0 in the result
and sets all 0 bits in its operand to 1 in the result—otherwise referred to as “taking the one's
complement of the value.” The fourth output window in Fig. K.4 shows the results of
taking the one’s complement of the value 21845 (line 60). The result is -21846.

Figure K.8 demonstrates the left-shift operator (<<), the signed right-shift operator
(>>) and the unsigned right-shift operator (>>>). The application asks the user to enter an
integer and choose the operation, then performs a one-bit shift and displays the results of
the shift in both integer and bitwise representation. We use the utility class BitRepresen-
tation (Fig. K.5) to display the bit representation of an integer.

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

1 0 1

0 1 1

1 1 1

Fig. K.6 | Bitwise inclusive OR operator (|) combining two bits.

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

1 0 1

0 1 1

1 1 0

Fig. K.7 | Bitwise exclusive OR operator (^) combining two bits.

1 // Fig. K.8: BitShift.java
2 // Using the bitwise shift operators.
3 import java.util.Scanner;
4
5 public class BitShift {
6 public static void main(String[] args) {
7 int choice = 0; // store operation type
8 int input = 0; // store input integer
9 int result = 0; // store operation result

Fig. K.8 | Bitwise shift operations. (Part 1 of 3.)

jhtp_appK_BitManipulation.fm Page 8 Tuesday, April 11, 2017 12:28 PM

K.2 Bit Manipulation and the Bitwise Operators K_9

10 Scanner scanner = new Scanner(System.in); // create Scanner
11
12 // continue execution until user exit
13 while (true) {
14 // get shift operation
15 System.out.println("\n\nPlease choose the shift operation:");
16 System.out.println("1--Left Shift (<<)");
17 System.out.println("2--Signed Right Shift (>>)");
18 System.out.println("3--Unsigned Right Shift (>>>)");
19 System.out.println("4--Exit");
20 choice = scanner.nextInt();
21
22 // perform shift operation
23 switch (choice) {
24 case 1: // <<
25 System.out.println("Please enter an integer to shift:");
26 input = scanner.nextInt(); // get input integer
27
28 System.out.printf("\n%d << 1 = %d", input, result);
29 break;
30 case 2: // >>
31 System.out.println("Please enter an integer to shift:");
32 input = scanner.nextInt(); // get input integer
33
34 System.out.printf("\n%d >> 1 = %d", input, result);
35 break;
36 case 3: // >>>
37 System.out.println("Please enter an integer to shift:");
38 input = scanner.nextInt(); // get input integer
39
40 System.out.printf("\n%d >>> 1 = %d", input, result);
41 break;
42 case 4: default: // default operation is <<
43 System.exit(0); // exit application
44 }
45
46 // display input integer and result in bits
47 BitRepresentation.display(input);
48 BitRepresentation.display(result);
49 }
50 }
51 }

Please choose the shift operation:
1--Left Shift (<<)
2--Signed Right Shift (>>)
3--Unsigned Right Shift (>>>)
4--Exit
1
Please enter an integer to shift:
1

Fig. K.8 | Bitwise shift operations. (Part 2 of 3.)

result = input << 1; // left shift one position

result = input >> 1; // signed right shift one position

result = input >>> 1; // unsigned right shift one position

jhtp_appK_BitManipulation.fm Page 9 Tuesday, April 11, 2017 12:28 PM

K_10 Appendix K Bit Manipulation

 The left-shift operator (<<) shifts the bits of its left operand to the left by the number
of bits specified in its right operand (performed at line 27 in Fig. K.8). Bits vacated to the
right are replaced with 0s; 1s shifted off the left are lost. The first output window in
Fig. K.8 demonstrates the left-shift operator. Starting with the value 1, the left shift oper-
ation was chosen, resulting in the value 2.

The signed right-shift operator (>>) shifts the bits of its left operand to the right by the
number of bits specified in its right operand (performed at line 33 in Fig. K.8). Performing
a right shift causes the vacated bits at the left to be replaced by 0s if the number is positive or
by 1s if the number is negative. Any 1s shifted off the right are lost. Next, the output window
the results of signed right shifting the value -2147483648, which is the value 1 being left
shifted 31 times. Notice that the leftmost bit is replaced by 1 because the number is negative.

The unsigned right-shift operator (>>>) shifts the bits of its left operand to the right
by the number of bits specified in its right operand (performed at line 39 in Fig. K.8). Per-
forming an unsigned right shift causes the vacated bits at the left to be replaced by 0s. Any
1s shifted off the right are lost. The third output window of Fig. K.8 shows the results of
unsigned right shifting the value -2147483648. Notice that the leftmost bit is replaced by

1 << 1 = 2
Bit representation of 1 is:
00000000 00000000 00000000 00000001
Bit representation of 2 is:
00000000 00000000 00000000 00000010

Please choose the shift operation:
1--Left Shift (<<)
2--Signed Right Shift (>>)
3--Unsigned Right Shift (>>>)
4--Exit
2
Please enter an integer to shift:
-2147483648

-2147483648 >> 1 = -1073741824
Bit representation of -2147483648 is:
10000000 00000000 00000000 00000000
Bit representation of -1073741824 is:
11000000 00000000 00000000 00000000

Please choose the shift operation:
1--Left Shift (<<)
2--Signed Right Shift (>>)
3--Unsigned Right Shift (>>>)
4--Exit
3
Please enter an integer to shift:
-2147483648

-2147483648 >>> 1 = 1073741824
Bit representation of -2147483648 is:
10000000 00000000 00000000 00000000
Bit representation of 1073741824 is:
01000000 00000000 00000000 00000000

Fig. K.8 | Bitwise shift operations. (Part 3 of 3.)

jhtp_appK_BitManipulation.fm Page 10 Tuesday, April 11, 2017 12:28 PM

K.3 BitSet Class K_11

0. Each bitwise operator (except the bitwise complement operator) has a corresponding
assignment operator. These bitwise assignment operators are shown in Fig. K.9.

K.3 BitSet Class
Class BitSet makes it easy to create and manipulate bit sets, which are useful for repre-
senting sets of boolean flags. BitSets are dynamically resizable—more bits can be added
as needed, and a BitSet will grow to accommodate the additional bits. Class BitSet pro-
vides two constructors—a no-argument constructor that creates an empty BitSet and a
constructor that receives an integer representing the number of bits in the BitSet. By de-
fault, each bit in a BitSet has a false value—the underlying bit has the value 0. A bit is
set to true (also called “on”) with a call to BitSet method set, which receives the index
of the bit to set as an argument. This makes the underlying value of that bit 1. Bit indices
are zero based, like arrays. A bit is set to false (also called “off”) by calling BitSet method
clear. This makes the underlying value of that bit 0. To obtain the value of a bit, use Bit-
Set method get, which receives the index of the bit to get and returns a boolean value rep-
resenting whether the bit at that index is on (true) or off (false).

Class BitSet also provides methods for combining the bits in two BitSets, using bit-
wise logical AND (and), bitwise logical inclusive OR (or), and bitwise logical exclusive OR
(xor). Assuming that b1 and b2 are BitSets, the statement

performs a bit-by-bit logical AND operation between BitSets b1 and b2. The result is
stored in b1. When b2 has more bits than b1, the extra bits of b2 are ignored. Hence, the
size of b1 remain unchanged. Bitwise logical inclusive OR and bitwise logical exclusive OR
are performed by the statements

When b2 has more bits than b1, the extra bits of b2 are ignored. Hence the size of b1 re-
mains unchanged.

BitSet method size returns the number of bits in a BitSet. BitSet method equals
compares two BitSets for equality. Two BitSets are equal if and only if each BitSet has
identical values in corresponding bits. BitSet method toString creates a string represen-
tation of a BitSet’s contents.

Bitwise assignment operators

&= Bitwise AND assignment operator.
|= Bitwise inclusive OR assignment operator.
^= Bitwise exclusive OR assignment operator.
<<= Left-shift assignment operator.
>>= Signed right-shift assignment operator.
>>>= Unsigned right-shift assignment operator.

Fig. K.9 | Bitwise assignment operators.

b1.and(b2);

b1.or(b2);
b1.xor(b2);

jhtp_appK_BitManipulation.fm Page 11 Tuesday, April 11, 2017 12:28 PM

K_12 Appendix K Bit Manipulation

Figure K.10 implements the Sieve of Eratosthenes (for finding prime numbers). We
use a BitSet to implement the algorithm. The application asks the user to enter an integer
between 2 and 1023, displays all the prime numbers from 2 to 1023 and determines
whether that number is prime.

1 // Fig. K.10: BitSetTest.java
2 // Using a BitSet to demonstrate the Sieve of Eratosthenes.
3
4 import java.util.Scanner;
5
6 public class BitSetTest {
7 public static void main(String[] args) {
8 // get input integer
9 Scanner scanner = new Scanner(System.in);

10 System.out.println("Please enter an integer from 2 to 1023");
11 int input = scanner.nextInt();
12
13
14
15
16
17 // set all bits from 2 to 1023
18 for (int i = 2; i < size; i++) {
19
20 }
21
22 // perform Sieve of Eratosthenes
23 int finalBit = (int) Math.sqrt(size);
24
25 for (int i = 2; i < finalBit; i++) {
26 if () {
27 for (int j = 2 * i; j < size; j += i) {
28
29 }
30 }
31 }
32
33 int counter = 0;
34
35 // display prime numbers from 2 to 1023
36 for (int i = 2; i < size; i++) {
37 if () {
38 System.out.print(String.valueOf(i));
39 System.out.print(++counter % 7 == 0 ? "\n" : "\t");
40 }
41 }
42
43 // display result
44 if () {
45 System.out.printf("\n%d is a prime number", input);
46 }

Fig. K.10 | Sieve of Eratosthenes, using a BitSet. (Part 1 of 2.)

import java.util.BitSet;

// perform Sieve of Eratosthenes
BitSet sieve = new BitSet(1024);
int size = sieve.size();

sieve.set(i);

sieve.get(i)

sieve.clear(j);

sieve.get(i)

sieve.get(input)

jhtp_appK_BitManipulation.fm Page 12 Tuesday, April 11, 2017 12:28 PM

K.3 BitSet Class K_13

 Line 14 creates a BitSet of 1024 bits. We ignore the bits at indices zero and one in this
application. Lines 18–20 set all the bits in the BitSet to “on” with BitSet method set.
Lines 23–31 determine all the prime numbers from 2 to 1023. The integer finalBit spec-
ifies when the algorithm is complete. The basic algorithm is that a number is prime if it has
no divisors other than 1 and itself. Starting with the number 2, once we know that a number
is prime, we can eliminate all multiples of that number. The number 2 is divisible only by 1
and itself, so it’s prime. Therefore, we can eliminate 4, 6, 8 and so on. Elimination of a value
consists of setting its bit to “off” with BitSet method clear (line 28). The number 3 is divis-
ible by 1 and itself. Therefore, we can eliminate all multiples of 3. (Keep in mind that all even
numbers have already been eliminated.) After the list of primes is displayed, lines 44–49 use
BitSet method get (line 44) to determine whether the bit for the number the user entered
is set. If so, line 45 displays a message indicating that the number is prime.

47 else {
48 System.out.printf("\n%d is not a prime number", input);
49 }
50 }
51 }

Please enter an integer from 2 to 1023
773
2 3 5 7 11 13 17
19 23 29 31 37 41 43
47 53 59 61 67 71 73
79 83 89 97 101 103 107
109 113 127 131 137 139 149
151 157 163 167 173 179 181
191 193 197 199 211 223 227
229 233 239 241 251 257 263
269 271 277 281 283 293 307
311 313 317 331 337 347 349
353 359 367 373 379 383 389
397 401 409 419 421 431 433
439 443 449 457 461 463 467
479 487 491 499 503 509 521
523 541 547 557 563 569 571
577 587 593 599 601 607 613
617 619 631 641 643 647 653
659 661 673 677 683 691 701
709 719 727 733 739 743 751
757 761 769 773 787 797 809
811 821 823 827 829 839 853
857 859 863 877 881 883 887
907 911 919 929 937 941 947
953 967 971 977 983 991 997
1009 1013 1019 1021
773 is a prime number

Fig. K.10 | Sieve of Eratosthenes, using a BitSet. (Part 2 of 2.)

jhtp_appK_BitManipulation.fm Page 13 Tuesday, April 11, 2017 12:28 PM

