
L
Labeled break and continue
Statements
L.1 Introduction
In Chapter 5, we discussed Java’s break and continue statements, which enable program-
mers to alter the flow of control in control statements. Java also provides the labeled break
and continue statements for cases in which a programmer needs to conveniently alter the
flow of control in nested control statements. This appendix demonstrates the labeled
break and continue statements with examples using nested for statements.

L.2 Labeled break Statement
The break statement presented in Section 5.8.1 enables a program to break out of the
while, for, do…while or switch in which the break statement appears. Sometimes these
control statements are nested in other iteration statements. A program might need to exit
the entire nested control statement in one operation, rather than wait for it to complete
execution normally. To break out of such nested control statements, you can use the la-
beled break statement. This statement, when executed in a while, for, do…while or
switch, causes immediate exit from that control statement and any number of enclosing
statements. Program execution resumes with the first statement after the enclosing labeled
statement. The statement that follows the label can be either an iteration statement or a
block in which an iteration statement appears. Figure L.1 demonstrates the labeled break
statement in a nested for statement.

The block (lines 5–23 in Fig. L.1) begins with a label (an identifier followed by a
colon) at line 5; here we use the stop: label. The block is enclosed in braces (lines 6 and
23) and includes the nested for (lines 8–19) and the output statement at line 22. When
the if at line 11 detects that row is equal to 5, the break statement at line 12 executes. This
statement terminates both the for at lines 10–16 and its enclosing for at lines 8–19. Then
the program proceeds immediately to the first statement after the labeled block—in this
case, the end of main is reached and the program terminates. The outer for fully executes
its body only four times. The output statement at line 22 never executes, because it’s in
the labeled block’s body, and the outer for never completes.

Good Programming Practice L.1
Too many levels of nested control statements can make a program difficult to read. As a
general rule, try to avoid using more than three levels of nesting.

jhtp_appL_LabeledBreak.fm Page 1 Tuesday, April 11, 2017 12:18 PM

L_2 Appendix L Labeled break and continue Statements

L.3 Labeled continue Statement
The continue statement presented in Section 5.8.2 proceeds with the next iteration of the
immediately enclosing while, for or do…while. The labeled continue statement skips
the remaining statements in that statement’s body and any number of enclosing iteration
statements and proceeds with the next iteration of the enclosing labeled iteration state-
ment (i.e., a for, while or do…while preceded by a label). In labeled while and
do…while statements, the program evaluates the loop-continuation test of the labeled
loop immediately after the continue statement executes. In a labeled for, the increment
expression is executed and the loop-continuation test is evaluated. Figure L.2 uses a la-
beled continue statement in a nested for to enable execution to continue with the next
iteration of the outer for.

The labeled for (lines 5–19) starts at the nextRow label. When the if at line 13 in the
inner for detects that column is greater than row, the continue statement at line 14 exe-
cutes, and program control continues with the increment of the control variable row of the
outer for loop. Even though the inner for counts from 1 to 10, the number of * characters
output on a row never exceeds the value of row, creating an interesting triangle pattern.

1 // Fig. L.1: BreakLabelTest.java
2 // Labeled break statement exiting a nested for statement.
3 public class BreakLabelTest {
4 public static void main(String[] args) {
5
6
7 // count 10 rows
8 for (int row = 1; row <= 10; row++) {
9 // count 5 columns

10 for (int column = 1; column <= 5 ; column++) {
11 if (row == 5) { // if row is 5,
12
13 }
14
15 System.out.print("* ");
16 }
17
18 System.out.println(); // outputs a newline
19 }
20
21 // following line is skipped
22 System.out.println("\nLoops terminated normally");
23
24 }
25 }

* * * * *
* * * * *
* * * * *
* * * * *

Fig. L.1 | Labeled break statement exiting a nested for statement.

stop: // labeled block
{

break stop; // jump to end of stop block

} // end labeled block

jhtp_appL_LabeledBreak.fm Page 2 Tuesday, April 11, 2017 12:18 PM

L.3 Labeled continue Statement L_3

1 // Fig. L.2: ContinueLabelTest.java
2 // Labeled continue statement terminating a nested for statement.
3 public class ContinueLabelTest {
4 public static void main(String[] args) {
5
6 // count 5 rows
7 for (int row = 1; row <= 5; row++) {
8 System.out.println(); // outputs a newline
9

10 // count 10 columns per row
11 for (int column = 1; column <= 10; column++) {
12 // if column greater than row, start next row
13 if (column > row) {
14
15 }
16
17 System.out.print("* ");
18 }
19 }
20
21 System.out.println(); // outputs a newline
22 }
23 }

*
* *
* * *
* * * *
* * * * *

Fig. L.2 | Labeled continue statement terminating a nested for statement.

nextRow: // target label of continue statement

continue nextRow; // next iteration of labeled loop

jhtp_appL_LabeledBreak.fm Page 3 Tuesday, April 11, 2017 12:18 PM

