
11Object-Oriented
Programming: Inheritance

O b j e c t i v e s
In this chapter you’ll:

■ Learn what inheritance is.

■ Understand the notions of
base classes and derived
classes and the relationships
between them.

■ Use the protected
member access specifier.

■ Use constructors and
destructors in inheritance
hierarchies.

■ Understand the order in
which constructors and
destructors are called in
inheritance hierarchies.

■ Understand the differences
between public,
protected and private
inheritance.

■ Use inheritance to customize
existing software.

cpphtp10.book Page 1 Tuesday, September 6, 2016 7:06 PM

2 Chapter 11 Object-Oriented Programming: Inheritance

Self-Review Exercises
11.1 Fill in the blanks in each of the following statements:

a) enables new classes to absorb the data and behaviors of existing classes and
embellish these classes with new capabilities.

ANS: Inheritance.
b) A base class’s and members can be accessed in the base-class defini-

tion, in derived-class definitions and in friends of the base class and derived classes.
ANS: public, protected.
c) In a(n) relationship, an object of a derived class also can be treated as an object

of its base class.
ANS: is-a or inheritance (for public inheritance).
d) In a(n) relationship, a class object has one or more objects of other classes as

members.
ANS: has-a or composition or aggregation.
e) In single inheritance, a class exists in a(n) relationship with its derived classes.
ANS: hierarchical.
f) A base class’s members are accessible within that base class and anywhere that

the program has a handle to an object of that class or one of its derived classes.
ANS: public.
g) A base class’s protected access members have a level of protection between those of

public and access.
ANS: private.
h) C++ provides for , which allows a derived class to inherit from many base class-

es, even if the base classes are unrelated.
ANS: multiple inheritance.
i) When an object of a derived class is instantiated, the base class’s is called im-

plicitly or explicitly to do any necessary initialization of the base-class data members in
the derived-class object.

ANS: constructor.
j) When deriving a class with public inheritance, public members of the base class be-

come members of the derived class, and protected members of the base class
become members of the derived class.

ANS: public, protected.
k) When deriving from a class with protected inheritance, public members of the base

class become members of the derived class, and protected members of the
base class become members of the derived class.

ANS: protected, protected.

11.2 State whether each of the following is true or false. If false, explain why.
a) Base-class constructors are not automatically inherited by derived classes.
ANS: True.
b) A has-a relationship is implemented via inheritance.
ANS: False. A has-a relationship is implemented via composition. An is-a relationship is

implemented via inheritance.
c) A Car class has an is-a relationship with the SteeringWheel and Brakes classes.
ANS: False. This is an example of a has-a relationship. Class Car has an is-a relationship

with class Vehicle.
d) When a derived-class object is destroyed, the destructors are called in the reverse order

of the constructors.
ANS: True.

cpphtp10.book Page 2 Tuesday, September 6, 2016 7:06 PM

 Exercises 3

Exercises
11.3 (Composition as an Alternative to Inheritance) Many programs written with inheritance
can be written with composition instead, and vice versa. Rewrite class BasePlusCommissionEmployee
of the CommissionEmployee–BasePlusCommissionEmployee hierarchy to use composition rather
than inheritance. After you do this, assess the relative merits of the two approaches for designing
classes CommissionEmployee and BasePlusCommissionEmployee, as well as for object-oriented pro-
grams in general. Which approach is more natural? Why?

ANS: For a relatively short program like this one, either approach is acceptable. Inheritance
becomes preferable when it makes the program easier to modify and promotes the
reuse of code. The inheritance approach is more natural because a base-salaried com-
mission employee is a commission employee. Composition is defined by the “has-a”
relationship, and clearly it would be strange to say that “a base-salaried commission
employee has a commission employee.”

11.4 (Inheritance Advantage) Discuss the ways in which inheritance saves time during program
development and helps prevent errors.

ANS: Inheritance allows developers to create derived classes that reuse code declared already
in a base class. Avoiding the duplication of common functionality between several
classes by building an inheritance hierarchy to contain the classes can save developers
a considerable amount of time. Placing common functionality in a single base class,
rather than duplicating the code in multiple unrelated classes, helps prevent the same
errors from appearing in multiple source-code files and makes debugging easier. If
several classes each contain duplicate code containing an error, the software developer
has to spend time correcting each source-code file with the error. However, if these
classes take advantage of inheritance, and the error occurs in the common function-
ality of the base class, the software developer needs to modify only the base class’s
code.

11.5 (Protected vs. Private Base Classes) Some programmers prefer not to use protected access
because they believe it breaks the encapsulation of the base class. Discuss the relative merits of using
protected access vs. using private access in base classes.

ANS: private data members are hidden in the base class and are accessible only through
the public or protected member functions of the base class. Using protected access
enables the derived class to manipulate the protected members without using the ac-
cess functions of the base class. If the base-class members are private, the member
functions of the base class must be used to access the data. This may result in a de-
crease in performance due to the extra function calls, yet accessing and modifying
private data in this indirect manner helps ensure that the data in the base class re-
mains consistent.

11.6 (Student Inheritance Hierarchy) Draw an inheritance hierarchy for students at a university
similar to the hierarchy shown in Fig. 11.2. Use Student as the base class of the hierarchy, then in-
clude classes UndergraduateStudent and GraduateStudent that derive from Student. Continue to
extend the hierarchy as deep (i.e., as many levels) as possible. For example, Freshman, Sophomore,
Junior and Senior might derive from UndergraduateStudent, and DoctoralStudent and Masters-
Student might derive from GraduateStudent. After drawing the hierarchy, discuss the relationships
that exist between the classes. [Note: You do not need to write any code for this exercise.]

cpphtp10.book Page 3 Tuesday, September 6, 2016 7:06 PM

4 Chapter 11 Object-Oriented Programming: Inheritance

ANS: This hierarchy contains many “is-a” (inheritance) relationships. An Undergraduat-
eStudent is a Student. A GraduateStudent is a Student, too. Each of the classes
Freshman, Sophomore, Junior and Senior is an UndergraduateStudent and is a Stu-
dent. Each of the classes DoctoralStudent and MastersStudent is a GraduateStudent
and is a Student.

11.7 (Richer Shape Hierarchy) The world of shapes is much richer than the shapes included in
the inheritance hierarchy of Fig. 11.3. Write down all the shapes you can think of—both two-di-
mensional and three-dimensional—and form them into a more complete Shape hierarchy with as
many levels as possible. Your hierarchy should have the base-class Shape from which class TwoDimen-
sionalShape and class ThreeDimensionalShape are derived. [Note: You do not need to write any code
for this exercise.] We’ll use this hierarchy in the exercises of Chapter 12 to process a set of distinct
shapes as objects of base-class Shape. (This technique, called polymorphism, is the subject of
Chapter 12.)

Freshman Senior

Sophomore Junior

UndergraduateStudent GraduateStudent

MastersStudentDoctoralStudent

Student

cpphtp10.book Page 4 Tuesday, September 6, 2016 7:06 PM

 Exercises 5

ANS: [Note: Solutions may vary.]

11.8 (Quadrilateral Inheritance Hierarchy) Draw an inheritance hierarchy for classes Quadri-
lateral, Trapezoid, Parallelogram, Rectangle and Square. Use Quadrilateral as the base class of
the hierarchy. Make the hierarchy as deep as possible.

Quadrilateral

Trapezoid

Rhombus Rectangle

Square

Ellipse

Circle

Parallelogram

CubeTriangle Cylinder

PrismCone

TetrahedronDodecahedron

Sphere

TwoDimensionalShape ThreeDimensionalShape

Shape

Isosceles
Triangle

Equilateral
Triangle

cpphtp10.book Page 5 Tuesday, September 6, 2016 7:06 PM

6 Chapter 11 Object-Oriented Programming: Inheritance

ANS:

Quadrilateral

Trapezoid

Parallelogram

Rectangle

Square

cpphtp10.book Page 6 Tuesday, September 6, 2016 7:06 PM

