
14File Processing

O b j e c t i v e s
In this chapter you’ll:

■ Create, read, write and
update files.

■ Perform sequential file
processing.

■ Perform random-access file
processing.

■ Use high-performance
unformatted I/O operations.

■ Understand the differences
between formatted-data and
raw-data file processing.

■ Build a transaction-
processing program using
random-access file
processing.

■ Understand the concept of
object serialization.

cpphtp10.book Page 1 Tuesday, September 6, 2016 7:06 PM

2 Chapter 14 File Processing

Self-Review Exercises
14.1 (Fill in the Blanks) Fill in the blanks in each of the following:

a) Member function of the file streams fstream, ifstream and ofstream closes
a file.

ANS: close.
b) The ostream member function is normally used when writing data to a file in

random-access applications.
ANS: write.
c) Member function of the file streams fstream, ifstream and ofstream opens

a file.
ANS: open.
d) The istream member function is normally used when reading data from a file

in random-access applications.
ANS: read.
e) Member functions and of istream and ostream set the file-position

pointer to a specific location in an input or output stream, respectively.
ANS: seekg, seekp.

14.2 (True or False) State which of the following are true and which are false. If false, explain why.
a) Member function read cannot be used to read data from the input object cin.
ANS: False. Function read can read from any input stream object derived from istream.
b) You must create the cin, cout, cerr and clog objects explicitly.
ANS: False. These four streams are created automatically for you. The <iostream> header

must be included in a file to use them. This header includes declarations for each pre-
defined stream object.

c) A program must call function close explicitly to close a file associated with an if-
stream, ofstream or fstream object.

ANS: False. The files will be closed when destructors for ifstream, ofstream or fstream
objects execute when the stream objects go out of scope or before program execution
terminates, but it’s a good programming practice to close all files explicitly with close
once they’re no longer needed.

d) If the file-position pointer points to a location in a sequential file other than the beginning
of the file, the file must be closed and reopened to read from the beginning of the file.

ANS: False. Member functions seekp and seekg can be used to reposition the “put” or
“get” file-position pointers, respectively, to the beginning of the file.

e) The ostream member function write can write to standard-output stream cout.
ANS: True.
f) Data in sequential files always is updated without overwriting nearby data.
ANS: False. In most cases, sequential file records are not of uniform length. Therefore, it’s

possible that updating a record will cause other data to be overwritten.
g) Searching all records in a random-access file to find a specific record is unnecessary.
ANS: True.
h) Records in random-access files must be of uniform length.
ANS: False. Records in a random-access file normally are of uniform length.
i) Member functions seekp and seekg must seek relative to the beginning of a file.
ANS: False. It’s possible to seek from the beginning of the file, from the end of the file and

from the current position in the file.

14.3 Assume that each of the following statements applies to the same program.

cpphtp10.book Page 2 Tuesday, September 6, 2016 7:06 PM

 Exercises 3

a) Write a statement that opens file oldmast.dat for input; use an ifstream object called
inOldMaster.

ANS: ifstream inOldMaster{"oldmast.dat", ios::in};
b) Write a statement that opens file trans.dat for input; use an ifstream object called

inTransaction.
ANS: ifstream inTransaction{"trans.dat", ios::in};
c) Write a statement that opens file newmast.dat for output (and creation); use ofstream

object outNewMaster.
ANS: ofstream outNewMaster{"newmast.dat", ios::out};
d) Write a statement that reads a record from the file oldmast.dat. The record consists of

integer accountNumber, string name (containing spaces) and floating-point currentBal-
ance. Use ifstream object inOldMaster.

ANS: inOldMaster >> accountNumber >> quoted(name) >> currentBalance;
e) Write a statement that reads a record from the file trans.dat. The record consists of in-

teger accountNum and floating-point dollarAmount. Use ifstream object inTransaction.
ANS: inTransaction >> accountNum >> dollarAmount;
f) Write a statement that writes a record to the file newmast.dat. The record consists of

integer accountNum, string name, and floating-point currentBalance. Use ofstream ob-
ject outNewMaster.

ANS: outNewMaster << accountNum << " " << name << " " << currentBalance;

14.4 Find the error(s) and show how to correct it (them) in each of the following.
a) File payables.dat referred to by ofstream object outPayable has not been opened.

outPayable << account << company << amount << endl;

ANS: Error: The file payables.dat has not been opened before the attempt is made to out-
put data to the stream.
Correction: Use ofstream function open to open payables.dat for output.

b) The following statement should read a record from the file payables.dat. The if-
stream object inPayable refers to this file, and ifstream object inReceivable refers to
the file receivables.dat.

inReceivable >> account >> company >> amount;

ANS: Error: The incorrect ifstream object is being used to read a record from the file
named payables.dat.
Correction: Use ifstream object inPayable to refer to payables.dat.

c) The file tools.dat should be opened to add data to the file without discarding the cur-
rent data.

ofstream outTools("tools.dat", ios::out);

ANS: Error: The file’s contents are discarded because the file is opened for output
(ios::out).
Correction: To add data to the file, open the file either for updating (ios::ate) or for
appending (ios::app).

Exercises
NOTE: Solutions to the programming exercises are located in the ch14solutions folder.

14.5 (Fill in the Blanks) Fill in the blanks in each of the following:
a) Computers store large amounts of data on secondary storage devices as .
ANS: files.

cpphtp10.book Page 3 Tuesday, September 6, 2016 7:06 PM

4 Chapter 14 File Processing

b) The standard stream objects declared by header <iostream> are , ,
 and .

ANS: cin, cout, cerr, clog.
c) ostream member function repositions the file-position pointer in a file.
ANS: put.
d) is the default file-open mode for an ofstream.
ANS: write.
e) istream member function repositions the file-position pointer in a file.
ANS: seekg.

14.10 Write a series of statements that accomplish each of the following. Assume that we’ve de-
fined class Person that contains the private data members

char lastName[15];
char firstName[10];
int age;
int id;

and public member functions

// accessor functions for id
void setId(int);
int getId() const;

// accessor functions for lastName
void setLastName(const string&);
string getLastName() const;

// accessor functions for firstName
void setFirstName(const string&);
string getFirstName() const;

// accessor functions for age
void setAge(int);
int getAge() const;

Also assume that any random-access files have been opened properly.
a) Initialize nameage.dat with 100 records that store values lastName ="unassigned",

firstName = "" and age = 0.
ANS:

 // fstream object "fileObject" corresponds to file nameage.dat
 Person blankPerson;
 blankPerson.setLastName("unassigned");
 blankPerson.setFirstName("");
 blankPerson.setAge("0");
 blankPerson.id = 0;

 for (size_t r{0}; r < 100; r++) {
 fileObject.write(reinterpret_cast<const char *>(&blankPerson),
 sizeof(Person));
 }

b) Input 10 last names, first names and ages, and write them to the file.
ANS:

 string last;
 string first;
 string age;
 int id;
 unsigned int counter{1};

 while (counter <= 10) {

cpphtp10.book Page 4 Tuesday, September 6, 2016 7:06 PM

 Exercises 5

 do { // obtain id-number value
 cout << "Enter id number for new record (1 - 100): "
 cin << id;
 } while ((id < 1) || (id > 100));

 // move file-position pointer to correct record in file
 fileObject.seekg((id - 1) * sizeof(Person));

 // read record from file to determine if one already exists
 Person person;
 fileObject.read(reinterpret_cast<char *>(&person), sizeof(Person));

 // create record, if record does not previously exist
 if (person.getId() == 0) {
 cout << "Enter last name, first name, and age: ";
 cin >> setw(15) last;
 cin >> setw(15) first;
 cin >> setw(4) >> age;
 person.setLastName(last);
 person.setFirstName(first);
 person.setAge(age);
 person.setId(id);

 // move file-position pointer to correct record in file
 fileObject.seekp((id - 1) * sizeof(Person));

 // insert new record
 fileObject.write(reinterpret_cast<const char *>(&person),
 sizeof(Person));

 ++counter; // record added, increase counter
 }
 else { // display error if record previously exists
 cerr << "Record #" << id << " already contains data." << endl;
 }
 }

c) Update a record that already contains information. If the record does not contain infor-
mation, inform the user "No info".

ANS:

 char lastName[15];
 char firstName[10];
 int age;
 int id;

 do { // obtain id-number value
 cout << "Enter id number for new record (1 - 100): "
 cin << id;
 } while ((id < 1) || (id > 100));

 // move file-position pointer to correct record in file
 fileObject.seekg((id - 1) * sizeof(Person));

 // read record from file to determine if one already exists
 Person person;
 fileObject.read(reinterpret_cast<char *>(&person), sizeof(Person));

 // update record, if no record currently exists
 if (person.getId() != 0) {
 cout << "Enter new last name, first name, and age: ";
 cin >> setw(15) last;

cpphtp10.book Page 5 Tuesday, September 6, 2016 7:06 PM

6 Chapter 14 File Processing

 cin >> setw(10) >> first;
 cin >> age;
 person.setLastName(last);
 person.setFirstName(first);
 person.setAge(age);
 person.setId(id);

 // move file-position pointer to correct record in file
 fileObject.seekp((id - 1) * sizeof(Person));

 // insert new record
 fileObject.write(reinterpret_cast<const char *>(&person),
 sizeof(Person));
 }
 else { // display error if record did not previously exists
 cerr << "No info." << endl;
 }

d) Delete a record that contains information by reinitializing that particular record.
ANS:

 do { // obtain id-number value
 cout << "Enter id number for new record (1 - 100): "
 cin << id;
 } while ((id < 1) || (id > 100));

 // move file-position pointer to correct record in file
 fileObject.seekg((id - 1) * sizeof(Person));

 // read record from file
 Person person;
 fileObject.read(reinterpret_cast<char *>(&person), sizeof(Person));

 if (person.id != 0) { // delete record, if record exists in file
 // create blank record
 Person blankPerson;
 blankPerson.setLastName("unassigned");
 blankPerson.setFirstName("");
 blankPerson.setAge("0");
 blankPerson.id = 0;

 // move file-position pointer to correct record in file
 fileObject.seekp((id - 1) * sizeof(Person));

 // replace existing record with blank record
 fileObject.write(reinterpret_cast<const char *>(&blankPerson),
 sizeof(Person));

 cout << "Record #" << id << " deleted." << endl;
 }
 else { // display error if record does not exist
 cerr << "Record #" << id << " is empty." << endl;
 }

cpphtp10.book Page 6 Tuesday, September 6, 2016 7:06 PM

