
19Custom Templatized
Data Structures

O b j e c t i v e s
In this chapter you’ll:

■ Form linked data structures
using pointers, self-referential
classes and recursion.

■ Create and manipulate
dynamic data structures such
as linked lists, queues, stacks
and binary trees.

■ Use binary search trees for
high-speed searching and
sorting.

■ Learn important applications
of linked data structures.

■ Create reusable data
structures with class
templates, inheritance and
composition.

■ Have the opportunity to try
many challenging data-
structures exercises,
including the Building Your
Own Compiler project.

cpphtp10_19.fm Page 1 Wednesday, September 7, 2016 7:04 AM

2 Chapter 19 Custom Templatized Data Structures

Self-Review Exercises
19.1 Fill in the blanks in each of the following:

a) A self- class is used to form dynamic data structures that can grow and shrink
at execution time

ANS: referential.
b) The operator is used to dynamically allocate memory and construct an object;

this operator returns a pointer to the object.
ANS: new.
c) A(n) is a constrained version of a linked list in which nodes can be inserted

and deleted only from the start of the list and node values are returned in last-in, first-
out order.

ANS: stack.
d) A function that does not alter a linked list, but looks at the list to determine whether it’s

empty, is an example of a(n) function.
ANS: predicate.
e) A queue is referred to as a(n) data structure, because the first nodes inserted

are the first nodes removed.
ANS: first-in, first-out (FIFO).
f) The pointer to the next node in a linked list is referred to as a(n) .
ANS: link.
g) The operator is used to destroy an object and release dynamically allocated

memory.
ANS: delete.
h) A(n) is a constrained version of a linked list in which nodes can be inserted

only at the end of the list and deleted only from the start of the list.
ANS: queue.
i) A(n) is a nonlinear, two-dimensional data structure that contains nodes with

two or more links.
ANS: tree.
j) A stack is referred to as a(n) data structure, because the last node inserted is

the first node removed.
ANS: last-in, first-out (LIFO).
k) The nodes of a(n) tree contain two link members.
ANS: binary.
l) The first node of a tree is the node.
ANS: root.
m) Each link in a tree node points to a(n) or of that node.
ANS: child or subtree.
n) A tree node that has no children is called a(n) node.
ANS: leaf.
o) The four traversal algorithms we mentioned in the text for binary search trees are

, , and .
ANS: inorder, preorder, postorder and level order.

19.2 What are the differences between a linked list and a stack?
ANS: It’s possible to insert a node anywhere in a linked list and remove a node from any-

where in a linked list. Nodes in a stack may only be inserted at the top of the stack
and removed from the top of a stack.

cpphtp10_19.fm Page 2 Wednesday, September 7, 2016 7:04 AM

 Self-Review Exercises 3

19.3 What are the differences between a stack and a queue?
ANS: A queue data structure allows nodes to be removed only from the head of the queue

and inserted only at the tail of the queue. A queue is referred to as a first-in, first-out
(FIFO) data structure. A stack data structure allows nodes to be added to the stack
and removed from the stack only at the top. A stack is referred to as a last-in, first-
out (LIFO) data structure.

19.4 Perhaps a more appropriate title for this chapter would have been “Reusable Data Struc-
tures.” Comment on how each of the following entities or concepts contributes to the reusability of
data structures:

a) classes
ANS: Classes allow us to instantiate as many data structure objects of a certain type (i.e.,

class) as we wish.
b) class templates
ANS: Class templates enable us to instantiate related classes, each based on different type

parameters—we can then generate as many objects of each template class as we like.
c) inheritance
ANS: Inheritance enables us to reuse code from a base class in a derived class, so that the

derived-class data structure is also a base-class data structure (with public inheri-
tance, that is).

d) private inheritance
ANS: Private inheritance enables us to reuse portions of the code from a base class to form

a derived-class data structure; because the inheritance is private, all public base-class
member functions become private in the derived class. This enables us to prevent
clients of the derived-class data structure from accessing base-class member functions
that do not apply to the derived class.

e) composition
ANS: Composition enables us to reuse code by making a class object data structure a mem-

ber of a composed class; if we make the class object a private member of the com-
posed class, then the class object’s public member functions are not available through
the composed object’s interface.

19.5 Provide the inorder, preorder and postorder traversals of the binary search tree of Fig. 19.1.

ANS: The inorder traversal is

11 18 19 28 32 40 44 49 69 71 72 83 92 97 99

The preorder traversal is

49 28 18 11 19 40 32 44 83 71 69 72 97 92 99

The postorder traversal is

11 19 18 32 44 40 28 69 72 71 92 99 97 83 49

Fig. 19.1 | A 15-node binary search tree.

49

28

18 40 71 97

83

11 19 32 44 69 72 92 99

cpphtp10_19.fm Page 3 Wednesday, September 7, 2016 7:04 AM

4 Chapter 19 Custom Templatized Data Structures

Exercises
NOTE: Solutions to the programming exercises are located in the ch19solutions folder.

cpphtp10_19.fm Page 4 Wednesday, September 7, 2016 7:04 AM

