Bits, Characters, C Strings and structs

22

Objectives

In this chapter you'll learn:

- To create and use structs and to understand their near equivalence with classes.
- To use typedef to create aliases for data types.
- To manipulate data with the bitwise operators and to create bit fields for storing data compactly.
- To use the functions of the character-handling library <cctype>.
- To use the string-conversion functions of the generalutilities library <cstdlib>.
- To use the string-processing functions of the stringhandling library <cstring>.

Self-Review Exercises

22.1 Fill in the blanks in each of the following:
a) The bits in the result of an expression using the \qquad operator are set to one if the corresponding bits in each operand are set to one. Otherwise, the bits are set to zero.
ANS: bitwise AND ($\&$).
b) The bits in the result of an expression using the \qquad operator are set to one if at least one of the corresponding bits in either operand is set to one. Otherwise, the bits are set to zero.
ANS: bitwise inclusive OR (।).
c) Keyword \qquad introduces a structure declaration.
ANS: struct.
d) Keyword \qquad is used to create a synonym for a previously defined data type.
ANS: typedef.
e) Each bit in the result of an expression using the \qquad operator is set to one if exactly one of the corresponding bits in either operand is set to one.
ANS: bitwise exclusive OR (\wedge).
f) The bitwise AND operator \& is often used to \qquad bits (i.e., to select certain bits from a bit string while zeroing others).
ANS: mask.
g) The \qquad and \qquad operators are used to shift the bits of a value to the left or to the right, respectively.
ANS: left-shift operator (<<), right-shift operator (>>).
22.2 Write a single statement or a set of statements to accomplish each of the following:
a) Define a structure called Part containing int variable partNumber and char array partName, whose values may be as long as 25 characters.
ANS: struct Part \{

> int partNumber;
char partName[26];
\};
b) Define PartPtr to be a synonym for the type Part*.

ANS: typedef Part* PartPtr;
c) Use separate statements to declare variable a to be of type Part, array b[10] to be of type Part and variable ptr to be of type pointer to Part.
ANS: Part a; Part b[10]; Part* ptr;
d) Read a part number and a part name from the keyboard into the members of variable a. ANS: cin >> a.partNumber >> a.partName;
e) Assign the member values of variable a to element three of array b.

ANS: $\mathrm{b}[3]=\mathrm{a}$;
f) Assign the address of array b to the pointer variable ptr.

ANS: $\mathrm{ptr}=\mathrm{b}$;
g) Print the member values of element three of array b, using the variable ptr and the structure pointer operator to refer to the members.
ANS: cout $\ll(p t r+3)$->partNumber $\ll '$ '

$$
\ll(\text { ptr }+3)->\text { partName } \ll \text { end1; }
$$

22.3 Write a single statement to accomplish each of the following. Assume that variables c (which stores a character), x, y and z are of type int; variables d, e and f are of type double; variable ptr is of type char* and arrays s1[100] and s2[100] are of type char.
a) Convert the character stored in c to an uppercase letter. Assign the result to variable c . ANS: c = toupper(c);
b) Determine if the value of variable c is a digit. Use the conditional operator as shown in Figs. 22.18-22.20 to print " is a " or " is not a " when the result is displayed.
ANS: cout << '\' $\ll c \ll " \backslash ' "$

$$
\begin{aligned}
& \text { << (isdigit(c) ? "is a" : "is not a") } \\
& \text { << " digit" << endl; }
\end{aligned}
$$

c) Determine whether the value of variable c is a control character. Use the conditional operator to print " is a " or " is not a " when the result is displayed.
ANS: cout << ' \' ' << c << "\' '

$$
\begin{aligned}
& \text { << (iscntrl(c) ? "is a" : "is not a") } \\
& \ll \text { " control character" << endl; }
\end{aligned}
$$

d) Assign to ptr the location of the last occurrence of c in $s 1$.

ANS: $\mathrm{ptr}=\operatorname{strchr}(\mathrm{s} 1, \mathrm{c})$;
e) Convert the string "8.63582" to doub7e, and print the value.

ANS: out << atof("8.63582") << end7;
f) Determine whether the value of c is a letter. Use the conditional operator to print " is a " or " is not a " when the result is displayed.
ANS: cout \ll

$$
\begin{aligned}
& \ll \text { (isalpha(c) ? "is a" : "is not a") } \\
& \ll \text { " letter" << endl; }
\end{aligned}
$$

g) Assign to ptr the location of the first occurrence of s2 in s1.

ANS: $\mathrm{ptr}=\operatorname{strstr}(\mathrm{s} 1, \mathrm{~s} 2)$;
h) Determine whether the value of variable c is a printing character. Use the conditional operator to print " is a " or " is not a " when the result is displayed.
ANS: cout << '\'' << c << " \backslash '

$$
\begin{aligned}
& \text { << (isprint(c) ? "is a" : "is not a") } \\
& \text { << " printing character" << endl; }
\end{aligned}
$$

i) Assign to ptr the location of the first occurrence in s1 of any character from s2.

ANS: ptr = strpbrk(s1, s2);
j) Assign to ptr the location of the first occurrence of c in $s 1$.

ANS: ptr $=\operatorname{strchr}(\mathrm{s} 1, \mathrm{c})$;
k) Convert the string " -21 " to int, and print the value.

ANS: cout << atoi ("-21") << end1;

Exercises

NOTE: Solutions to the programming exercises are located in the ch22solutions folder.
22.4 (Defining Structures) Provide the definition for each of the following structures:
a) Structure Inventory, containing character array partName[30], integer partNumber, floating-point price, integer stock and integer reorder.
ANS: struct Inventory \{
char partName[30];
int partNumber;
double price;
int stock;
int reorder;
\};
b) A structure called Address that contains character arrays streetAddress[25], city [20], state[3] and zipCode[6].
ANS: struct Address
\{
char streetAddress[25];
char city[20];
char state[3];
char zipCode[6];
\};
c) Structure Student, containing arrays firstName[15] and lastName [15] and variable homeAddress of type struct Address from part (b).
ANS: struct Student
\{
char firstName[15];
char lastName[15];
struct Address homeAddress;
\};
d) Structure Test, containing 16 bit fields with widths of 1 bit. The names of the bit fields are the letters a to p.
ANS: struct Test
\{
unsigned $\mathrm{a}: 1, \mathrm{~b}: 1, \mathrm{c}: 1, \mathrm{~d}: 1, \mathrm{e}: 1, \mathrm{f}: 1, \mathrm{~g}: 1, \mathrm{~h}: 1$, i:1, j:1, k:1, 1:1, m:1, n:1, o:1, p:1;
\};

