
6Functions and an
Introduction to Recursion

O b j e c t i v e s
In this chapter you’ll:
■ Construct programs

modularly from functions.
■ Use common math library

functions.
■ Use function prototypes to

declare a function.
■ Use random-number

generation to implement
game-playing applications.

■ Use C++14 digit separators to
make numeric literals more
readable

■ Understand how the visibility
of identifiers is limited to
specific regions of programs.

■ Understand how the
function call/return
mechanism is supported by
the function-call stack and
activation records.

■ Understand the mechanisms
for passing data to functions
and returning results.

■ Use inline functions,
references and default
arguments.

■ Define with the same name
overloaded functions that
perform different tasks based
on the number and types of
their arguments.

■ Define function templates
that can generate families of
overloaded functions.

■ Write and use recursive
functions.

cpphtp10_06.fm Page 1 Wednesday, August 3, 2016 12:00 PM

2 Chapter 6 Functions and an Introduction to Recursion

Self-Review Exercises
6.1 Answer each of the following:

a) Program components in C++ are called and .
ANS: functions, classes.
b) A function is invoked with a(n) .
ANS: function call.
c) A variable known only within the function in which it’s defined is called a(n) .
ANS: local variable.
d) The statement in a called function passes the value of an expression back to

the calling function.
ANS: return.
e) The keyword is used in a function header to indicate that a function does not

return a value or to indicate that a function contains no parameters.
ANS: void.
f) An identifier’s is the portion of the program in which the identifier can be used.
ANS: scope.
g) The three ways to return control from a called function to a caller are ,

 and .
ANS: return;, return expression; or encounter the closing right brace of a function.
h) A(n) allows the compiler to check the number, types and order of the argu-

ments passed to a function.
ANS: function prototype.
i) Function is used to produce random numbers.
ANS: rand.
j) Function is used to set the random-number seed to randomize the number

sequence generated by function rand.
ANS: srand.
k) A variable declared outside any block or function is a(n) variable.
ANS: global.
l) For a local variable in a function to retain its value between calls to the function, it must

be declared .
ANS: static.
m) A function that calls itself either directly or indirectly (i.e., through another function)

is a(n) function.
ANS: recursive.
n) A recursive function typically has two components—one that provides a means for the

recursion to terminate by testing for a(n) case and one that expresses the prob-
lem as a recursive call for a slightly simpler problem than the original call.

ANS: base.
o) It’s possible to have various functions with the same name that operate on different

types or numbers of arguments. This is called function .
ANS: overloading.
p) The enables access to a global variable with the same name as a variable in the

current scope.
ANS: unary scope resolution operator (::).
q) The qualifier is used to declare read-only variables.
ANS: const.
r) A function enables a single function to be defined to perform a task on many

different data types.
ANS:

cpphtp10_06.fm Page 2 Wednesday, August 3, 2016 12:00 PM

 Self-Review Exercises 3

6.2 For the program in Fig. 6.1, state the scope (global namespace scope or block scope) of each
of the following elements:

a) The variable x in main.
ANS: block scope.
b) The variable y in function cube’s definition.
ANS: block scope.
c) The function cube.
ANS: global namespace scope.
d) The function main.
ANS: global namespace scope.
e) The function prototype for cube.
ANS: global namespace scope.

6.3 Write a program that tests whether the examples of the math library function calls shown
in Fig. 6.2 actually produce the indicated results.

ANS: See the following program:

1 // Exercise 6.2: ex06_02.cpp
2 #include <iostream>
3 using namespace std;
4
5 int cube(int y); // function prototype
6
7 int main() {
8 int x{0};
9

10 for (x = 1; x <= 10; x++) { // loop 10 times
11 cout << cube(x) << endl; // calculate cube of x and output results
12 }
13 }
14
15 // definition of function cube
16 int cube(int y) {
17 return y * y * y;
18 }

Fig. 6.1 | Program for Exercise 6.2.

1 // Exercise 6.3: ex06_03.cpp
2 // Testing the math library functions.
3 #include <iostream>
4 #include <iomanip>
5 #include <cmath>
6 using namespace std;
7
8 int main() {
9 cout << fixed << setprecision(1);

10
11 cout << "sqrt(" << 9.0 << ") = " << sqrt(9.0);
12 cout << "\nexp(" << 1.0 << ") = " << setprecision(6)
13 << exp(1.0) << "\nexp(" << setprecision(1) << 2.0
14 << ") = " << setprecision(6) << exp(2.0);
15 cout << "\nlog(" << 2.718282 << ") = " << setprecision(1)
16 << log(2.718282)
17 << "\nlog(" << setprecision(6) << 7.389056 << ") = "
18 << setprecision(1) << log(7.389056);

cpphtp10_06.fm Page 3 Wednesday, August 3, 2016 12:00 PM

4 Chapter 6 Functions and an Introduction to Recursion

6.4 Give the function header for each of the following functions:
a) Function hypotenuse that takes two double-precision, floating-point arguments, side1

and side2, and returns a double-precision, floating-point result.
ANS: double hypotenuse(double side1, double side2)

b) Function smallest that takes three integers, x, y and z, and returns an integer.
ANS: int smallest(int x, int y, int z)
c) Function instructions that does not receive any arguments and does not return a val-

ue. [Note: Such functions are commonly used to display instructions to a user.]
ANS: void instructions()
d) Function intToDouble that takes an integer argument, number, and returns a double-

precision, floating-point result.
ANS: double intToDouble(int number)

6.5 Give the function prototype (without parameter names) for each of the following:
a) The function described in Exercise 6.4(a).
ANS: double hypotenuse(double, double);
b) The function described in Exercise 6.4(b).
ANS: int smallest(int, int, int);

19 cout << "\nlog10(" << 10.0 << ") = " << log10(10.0)
20 << "\nlog10(" << 100.0 << ") = " << log10(100.0) ;
21 cout << "\nfabs(" << 5.1 << ") = " << fabs(5.1)
22 << "\nfabs(" << 0.0 << ") = " << fabs(0.0)
23 << "\nfabs(" << -8.76 << ") = " << fabs(-8.76);
24 cout << "\nceil(" << 9.2 << ") = " << ceil(9.2)
25 << "\nceil(" << -9.8 << ") = " << ceil(-9.8);
26 cout << "\nfloor(" << 9.2 << ") = " << floor(9.2)
27 << "\nfloor(" << -9.8 << ") = " << floor(-9.8);
28 cout << "\npow(" << 2.0 << ", " << 7.0 << ") = "
29 << pow(2.0, 7.0) << "\npow(" << 9.0 << ", "
30 << 0.5 << ") = " << pow(9.0, 0.5);
31 cout << setprecision(3) << "\nfmod("
32 << 2.6 << ", " << 1.2 << ") = "
33 << fmod(2.6, 1.2) << setprecision(1);
34 cout << "\nsin(" << 0.0 << ") = " << sin(0.0);
35 cout << "\ncos(" << 0.0 << ") = " << cos(0.0);
36 cout << "\ntan(" << 0.0 << ") = " << tan(0.0) << endl;
37 }

sqrt(9.0) = 3.0
exp(1.0) = 2.718282
exp(2.0) = 7.389056
log(2.718282) = 1.0
log(7.389056) = 2.0
log10(10.0) = 1.0
log10(100.0) = 2.0
fabs(5.1) = 5.1
fabs(0.0) = 0.0
fabs(-8.8) = 8.8
ceil(9.2) = 10.0
ceil(-9.8) = -9.0
floor(9.2) = 9.0
floor(-9.8) = -10.0
pow(2.0, 7.0) = 128.0
pow(9.0, 0.5) = 3.0
fmod(2.600, 1.200) = 0.200
sin(0.0) = 0.0
cos(0.0) = 1.0
tan(0.0) = 0.0

cpphtp10_06.fm Page 4 Wednesday, August 3, 2016 12:00 PM

 Self-Review Exercises 5

c) The function described in Exercise 6.4(c).
ANS: void instructions();
d) The function described in Exercise 6.4(d).
ANS: double intToDouble(int);

6.6 Write a declaration for double-precision, floating-point variable lastVal that should retain
its value between calls to the function in which it’s defined.

ANS: static double lastVal;

6.7 Find the error(s) in each of the following program segments, and explain how the error(s)
can be corrected (see also Exercise 6.46):

a) void g() {

 cout << "Inside function g" << endl;

 void h() {

 cout << "Inside function h" << endl;

 }

}
ANS: Error: Function h is defined in function g.

Correction: Move the definition of h out of the definition of g.
b) int sum(int x, int y) {

 int result{0};

 result = x + y;

}
ANS: Error: The function is supposed to return an integer, but does not.

Correction: Place a return result; statement at the end of the function’s body or de-
lete variable result and place the following statement in the function:

 return x + y;

c) int sum(int n) { // assume n is nonnegative

 if (0 == n)

 return 0;

 else

 n + sum(n - 1);

}
ANS: Error: The result of n + sum(n - 1) is not returned; sum returns an improper result.

Correction: Rewrite the statement in the else clause as

 return n + sum(n - 1);

d) void f(double a); {

 float a;

 cout << a << endl;

}
ANS: Errors: Semicolon after the right parenthesis that encloses the parameter list, and re-

defining the parameter a in the function definition.
Corrections: Delete the semicolon after the right parenthesis of the parameter list, and
delete the declaration float a;.

cpphtp10_06.fm Page 5 Wednesday, August 3, 2016 12:00 PM

6 Chapter 6 Functions and an Introduction to Recursion

e) void product() {

 int a{0};

 int b{0};

 int c{0};

 cout << "Enter three integers: ";

 cin >> a >> b >> c;

 int result{a * b * c};

 cout << "Result is " << result;

 return result;

}
ANS: Error: The function returns a value when it isn’t supposed to.

Correction: Eliminate the return statement or change the return type.

6.8 Why would a function prototype contain a parameter type declaration such as double&?
ANS:

6.9 (True/False) All arguments to function calls in C++ are passed by value.
ANS: This creates a reference parameter of type “reference to double” that enables the func-

tion to modify the original variable in the calling function.

6.10 Write a complete program that prompts the user for the radius of a sphere, and calculates
and prints the volume of that sphere. Use an inline function sphereVolume that returns the result
of the following expression: (4.0 / 3.0 * 3.14159 * pow(radius, 3)).

ANS: See the following program:

1 // Exercise 6.10 Solution: ex06_10.cpp
2 // Inline function that calculates the volume of a sphere.
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 const double PI{3.14159}; // define global constant PI
8
9 // calculates volume of a sphere

10 inline double sphereVolume(const double radius) {
11 return 4.0 / 3.0 * PI * pow(radius, 3);
12 }
13
14 int main() {
15 // prompt user for radius
16 cout << "Enter the length of the radius of your sphere: ";
17 double radiusValue;
18 cin >> radiusValue; // input radius
19
20 // use radiusValue to calculate volume of sphere and display result
21 cout << "Volume of sphere with radius " << radiusValue
22 << " is " << sphereVolume(radiusValue) << endl;
23 }

cpphtp10_06.fm Page 6 Wednesday, August 3, 2016 12:00 PM

 Exercises 7

Exercises

NOTE: Solutions to the programming exercises are located in the ch06solutions
folder.
6.11 Show the value of x after each of the following statements is performed:

a) x = fabs(7.5);
ANS: 7.5
b) x = floor(7.5);
ANS: 7.0
c) x = fabs(0.0);
ANS: 0.0
d) x = ceil(0.0);
ANS: 0.0
e) x = fabs(-6.4);
ANS: 6.4
f) x = ceil(-6.4);
ANS: -6.0
g) x = ceil(-fabs(-8 + floor(-5.5)));
ANS: -14.0

6.15 (Short-Answer Questions) Answer each of the following questions:
a) What does it mean to choose numbers “at random?”
ANS: Every number has an equal chance of being chosen at any time.
b) Why is the rand function useful for simulating games of chance?
ANS: Because it produces a sequence of pseudorandom numbers that appears to be ran-

dom.
c) Why would you randomize a program by using srand? Under what circumstances is it

desirable not to randomize?
ANS: The sequence of numbers produced by the random number generator differ each

time function srand is called. Not randomizing is useful for debugging purposes—
the programmer knows the sequence of numbers.

d) Why is it often necessary to scale or shift the values produced by rand?
ANS: To produce random values in a specific range.
e) Why is computerized simulation of real-world situations a useful technique?
ANS: It enables more accurate predictions of random events such as cars arriving at a toll

booth, people arriving in lines, birds arriving at a tree, etc. The results of a simulation
can help determine how many toll booths to have open or how many cashiers to have
open at specified times.

6.16 (Random Numbers) Write statements that assign random integers to the variable n in the
following ranges:

a) 1 ≤ n ≤ 2
ANS: n = 1 + rand() % 2;
b) 1 ≤ n ≤ 100
ANS: n = 1 + rand() % 100;
c) 0 ≤ n ≤ 9
ANS: n = rand() % 10;
d) 1000 ≤ n ≤ 1112
ANS: n = 1000 + rand() % 113;
e) –1 ≤ n ≤ 1
ANS: n = rand() % 3 - 1;

cpphtp10_06.fm Page 7 Wednesday, August 3, 2016 12:00 PM

8 Chapter 6 Functions and an Introduction to Recursion

f) –3 ≤ n ≤ 11
ANS: n = rand() % 15 - 3;

6.17 (Random Numbers) Write a single statement that prints a number at random from each of
the following sets:

a) 2, 4, 6, 8, 10.
ANS: cout << 2 * (1 + rand() % 5)) << ’\n’;
b) 3, 5, 7, 9, 11.
ANS: cout << 1 + 2 * (1 + rand() % 5)) << ’\n’;
c) 6, 10, 14, 18, 22.
ANS: cout << 6 + 4 * (rand() % 5) << ’\n’;

6.43 What does the following program do?

ANS: This program multiplies two integers recursively.

6.46 (Find the Error) Find the error in each of the following program segments and explain how
to correct it:

a) float cube(float); // function prototype

cube(float number) { // function definition

 return number * number * number;

}
ANS: Error: The function definition defaults to a return type of int.

Correction: Specify a return type of float for the function definition.

1 // Exercise 6.43: ex06_43.cpp
2 // What does this program do?
3 #include <iostream>
4 using namespace std;
5
6 int mystery(int, int); // function prototype
7
8 int main() {
9 cout << "Enter two integers: ";

10 int x{0};
11 int y{0};
12 cin >> x >> y;
13 cout << "The result is " << mystery(x, y) << endl;
14 }
15
16 // Parameter b must be a positive integer to prevent infinite recursion
17 int mystery(int a, int b) {
18 if (1 == b) { // base case
19 return a;
20 }
21 else { // recursion step
22 return a + mystery(a, b - 1);
23 }
24 }

Enter two integers: 8 2
The result is 16

cpphtp10_06.fm Page 8 Wednesday, August 3, 2016 12:00 PM

 Exercises 9

b) int randomNumber{srand()};
ANS: Error: Function srand takes an unsigned argument and does not return a value.

Correction: Use rand instead of srand.
c) float y{123.45678};

int x;

x = y;

cout << static_cast<float>(x) << endl;
ANS: Error: The assignment of y to x truncates decimal places.

Correction: Declare x as type float instead of int and remove the now-redundant
static_cast.

d) double square(double number) {

 double number{0};

 return number * number;

}
ANS: Error: Variable number is declared twice.

Correction: Remove the declaration of variable number within the {}.
e) int sum(int n) {

 if (0 == n) {

 return 0;

 }

 else {

 return n + sum(n);

 }

}
ANS: Error: Infinite recursion.

Correction: Change sum(n) to sum(n - 1).

6.50 (Unary Scope Resolution Operator) What’s the purpose of the unary scope resolution oper-
ator?

ANS: The unary scope resolution operator is used to access a global variable. In particular,
the unary scope resolution operator is useful when a programmer needs to access a
global variable when a local variable exists with the same name.

6.53 (Find the Error) Determine whether the following program segments contain errors. For
each error, explain how it can be corrected. [Note: For a particular program segment, it’s possible
that no errors are present.]

a) template <typename A>

int sum(int num1, int num2, int num3) {

 return num1 + num2 + num3;

}
ANS: Error: The function return type and parameter types are int.

Correction: The function return type and parameter types should be A or the func-
tion should not be a template.

b) void printResults(int x, int y) {

 cout << "The sum is " << x + y << '\n';

 return x + y;

}
ANS: Error: The function specifies a void return type and attempts to return a value.

Two possible solutions: (1) change void to int, or (2) remove the line return x + y;.

cpphtp10_06.fm Page 9 Wednesday, August 3, 2016 12:00 PM

10 Chapter 6 Functions and an Introduction to Recursion

c) template <A>

A product(A num1, A num2, A num3) {

 return num1 * num2 * num3;

}
ANS: Error: Keyword class is missing in the template declaration.

Correction: Insert keyword class (or keyword typename), as in template <class A>.
d) double cube(int);

int cube(int);
ANS: Error: The signatures are not different. Overloaded functions must have different sig-

natures—the name and/or parameter list must be different. If only the returns types
differ, the compiler generates an error message.
Correction: Change either the name or parameter list of one of the functions.

6.55 (C++11 Scoped enum) Create a scoped enum named AccountType containing constants
named SAVINGS, CHECKING and INVESTMENT.

ANS: enum class AccountType {SAVINGS, CHECKING, INVESTMENT};

6.56 (Function Prototypes and Definitions) Explain the difference between a function prototype
and a function definition.

ANS: A function prototype tells the compiler the name of a function and the type of data
returned by the function. A prototype also describes any additional data required by
the function to perform its task (i.e., the function’s parameters). A prototype does not
contain code to make the function perform the task—it merely "outlines" the func-
tion so that the compiler can verify that programs call the function correctly. A func-
tion definition contains the actual code that executes to perform the function’s
specified task when the function is called. Parameter names are optional in the func-
tion prototype.

cpphtp10_06.fm Page 10 Wednesday, August 3, 2016 12:00 PM

