
8Pointers

O b j e c t i v e s
In this chapter you’ll:

■ Learn what pointers are.

■ Declare and initialize
pointers.

■ Use the address (&) and
indirection (*) pointer
operators.

■ Learn the similarities and
differences between pointers
and references.

■ Use pointers to pass
arguments to functions by
reference.

■ Use built-in arrays.

■ Use const with pointers.

■ Use operator sizeof to
determine the number of
bytes that store a value of a
particular type.

■ Understand pointer
expressions and pointer
arithmetic.

■ Understand the close
relationships between
pointers and built-in arrays.

■ Use pointer-based strings.

■ Use C++11 capabilities,
including nullptr and
Standard Library functions
begin and end.

cpphtp10_08.fm Page 1 Wednesday, August 3, 2016 4:28 PM

2 Chapter 8 Pointers

Self-Review Exercises
8.1 Answer each of the following:

a) A pointer is a variable that contains as its value the of another variable.
ANS: address.
b) A pointer should be initialized to or .
ANS: nullptr, an address.
c) The only integer that can be assigned directly to a pointer is .
ANS: 0.

8.2 State whether each of the following is true or false. If the answer is false, explain why.
a) The address operator & can be applied only to constants and to expressions.
ANS: False. The operand of the address operator must be an lvalue; the address operator

cannot be applied to literals or to expressions that result in temporary values.
b) A pointer that is declared to be of type void* can be dereferenced.
ANS: False. A pointer to void cannot be dereferenced. Such a pointer does not have a type

that enables the compiler to determine the type of the data and the number of bytes
of memory to which the pointer points.

c) A pointer of one type can’t be assigned to one of another type without a cast operation.
ANS: False. Pointers of any type can be assigned to void pointers. Pointers of type void can

be assigned to pointers of other types only with an explicit type cast.

8.3 For each of the following, write C++ statements that perform the specified task. Assume
that double-precision, floating-point numbers are stored in eight bytes and that the starting address
of the built-in array is at location 1002500 in memory. Each part of the exercise should use the re-
sults of previous parts where appropriate.

a) Declare a built-in array of type double called numbers with 10 elements, and initialize
the elements to the values 0.0, 1.1, 2.2, …, 9.9. Assume that the constant size has
been defined as 10.

ANS: double numbers[size]{0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9};
b) Declare a pointer nPtr that points to a variable of type double.
ANS: double* nPtr;
c) Use a for statement to display the elements of built-in array numbers using array sub-

script notation. Display each number with one digit to the right of the decimal point.
ANS: cout << fixed << showpoint << setprecision(1);

for (size_t i{0}; i < size; ++i) {
 cout << numbers[i] << ' ';
}

d) Write two separate statements that each assign the starting address of built-in array num-
bers to the pointer variable nPtr.

ANS: nPtr = numbers;

nPtr = &numbers[0];
e) Use a for statement to display the elements of built-in array numbers using pointer/off-

set notation with pointer nPtr.
ANS: cout << fixed << showpoint << setprecision(1);

for (size_t j{0}; j < size; ++j) {

 cout << *(nPtr + j) << ' ';

}

cpphtp10_08.fm Page 2 Wednesday, August 3, 2016 4:28 PM

 Self-Review Exercises 3

f) Use a for statement to display the elements of built-in array numbers using pointer/off-
set notation with the built-in array’s name as the pointer.

ANS: cout << fixed << showpoint << setprecision(1);

for (size_t k{0}; k < size; ++k) {

 cout << *(numbers + k) << ' ';

}
g) Use a for statement to display the elements of built-in array numbers using pointer/sub-

script notation with pointer nPtr.
ANS: cout << fixed << showpoint << setprecision(1);

for (size_t m{0}; m < size; ++m) {

 cout << nPtr[m] << ' ';

}
h) Refer to the fourth element of built-in array numbers using array subscript notation,

pointer/offset notation with the built-in array’s name as the pointer, pointer subscript
notation with nPtr and pointer/offset notation with nPtr.

ANS: numbers[3]

*(numbers + 3)

nPtr[3]

*(nPtr + 3)
i) Assuming that nPtr points to the beginning of built-in array numbers, what address is

referenced by nPtr + 8? What value is stored at that location?
ANS: The address is 1002500 + 8 * 8 = 1002564. The value is 8.8.
j) Assuming that nPtr points to numbers[5], what address is referenced by nPtr after nPtr

-= 4 is executed? What’s the value stored at that location?
ANS: The address of numbers[5] is 1002500 + 5 * 8 = 1002540.

The address of nPtr -= 4 is 1002540 - 4 * 8 = 1002508.
The value at that location is 1.1.

8.4 For each of the following, write a statement that performs the specified task. Assume that dou-
ble variables number1 and number2 have been declared and that number1 has been initialized to 7.3.

a) Declare the variable doublePtr to be a pointer to an object of type double and initialize
the pointer to nullptr.

ANS: double* doublePtr{nullptr};
b) Assign the address of variable number1 to pointer variable doublePtr.
ANS: doublePtr = &number1;
c) Display the value of the object pointed to by doublePtr.
ANS: cout << "The value of *fPtr is " << *doublePtr << endl;
d) Assign the value of the object pointed to by doublePtr to variable number2.
ANS: number2 = *doublePtr;
e) Display the value of number2.
ANS: cout << "The value of number2 is " << number2 << endl;
f) Display the address of number1.
ANS: cout << "The address of number1 is " << &number1 << endl;
g) Display the address stored in doublePtr. Is the address the same as that of number1?
ANS: cout << "The address stored in fPtr is " << doublePtr << endl;

Yes, the value is the same.

8.5 Perform the task specified by each of the following statements:
a) Write the function header for a function called exchange that takes two pointers to dou-

ble-precision, floating-point numbers x and y as parameters and does not return a value.
ANS: void exchange(double* x, double* y)

cpphtp10_08.fm Page 3 Wednesday, August 3, 2016 4:28 PM

4 Chapter 8 Pointers

b) Write the function prototype without parameter names for the function in part (a).
ANS: void exchange(double*, double*);
c) Write two statements that each initialize the built-in array of chars named vowel with

the string of vowels, "AEIOU".
ANS: char vowel[]{"AEIOU"};

char vowel[]{'A', 'E', 'I', 'O', 'U', '\0'};

8.6 Find the error in each of the following program segments. Assume the following declara-
tions and statements:

int* zPtr; // zPtr will reference built-in array z
int number;
int z[5]{1, 2, 3, 4, 5};

a) ++zPtr;
ANS: Error: zPtr has not been initialized.

Correction: Initialize zPtr with zPtr = z; (Parts b–e depend on this correction.)
b) // use pointer to get first value of a built-in array

number = zPtr;
ANS: Error: The pointer is not dereferenced.

Correction: Change the statement to number = *zPtr;
c) // assign built-in array element 2 (the value 3) to number

number = *zPtr[2];
ANS: Error: zPtr[2] is not a pointer and should not be dereferenced.

Correction: Change *zPtr[2] to zPtr[2].
d) // display entire built-in array z

for (size_t i{0}; i <= 5; ++i) {

 cout << zPtr[i] << endl;

}
ANS: Error: Referring to an out-of-bounds built-in array element with pointer subscript-

ing.
Correction: To prevent this, change the relational operator in the for statement to <
or change the 5 to a 4.

e) ++z;
ANS: Error: Trying to modify a built-in array’s name with pointer arithmetic.

Correction: Use a pointer variable instead of the built-in array’s name to accomplish
pointer arithmetic, or subscript the built-in array’s name to refer to a specific element.

Exercises
8.7 (True or False) State whether the following are true or false. If false, explain why.

a) Two pointers that point to different built-in arrays cannot be compared meaningfully.
ANS: True.
b) Because the name of a built-in array is implicitly convertible to a pointer to the first el-

ement of the built-in array, built-in array names can be manipulated in the same man-
ner as pointers.

ANS: False. An array name cannot be modified to point to a different location in memory
because an array name is a constant pointer to the first element of the array.

8.8 (Write C++ Statements) For each of the following, write C++ statements that perform the
specified task. Assume that unsigned integers are stored in four bytes and that the starting address
of the built-in array is at location 1002500 in memory.

cpphtp10_08.fm Page 4 Wednesday, August 3, 2016 4:28 PM

 Exercises 5

a) Declare an unsigned int built-in array values with five elements initialized to the even
integers from 2 to 10. Assume that the constant size has been defined as 5.

ANS: unsigned int values[SIZE]{2, 4, 6, 8, 10};
b) Declare a pointer vPtr that points to an object of type unsigned int.
ANS: unsigned int* vPtr;
c) Use a for statement to display the elements of built-in array values using array sub-

script notation.
ANS: for (int i{0}; i < SIZE; ++i) {

 cout << setw(4) << values[i];

}
d) Write two separate statements that assign the starting address of built-in array values

to pointer variable vPtr.
ANS: vPtr = values; and vPtr = &values[0];
e) Use a for statement to display the elements of built-in array values using pointer/offset

notation.
ANS: for (int i{0}; i < SIZE; ++i) {

 cout << setw(4) << *(vPtr + i);

}
f) Use a for statement to display the elements of built-in array values using pointer/offset

notation with the built-in array’s name as the pointer.
ANS: for (int i{0}; i < SIZE; ++i) {

 cout << setw(4) << *(values + i);

}
g) Use a for statement to display the elements of built-in array values by subscripting the

pointer to the built-in array.
ANS: for (int i{0}; i < SIZE; ++i) {

 cout << setw(4) << vPtr[i];
}

h) Refer to the fifth element of values using array subscript notation, pointer/offset nota-
tion with the built-in array name’s as the pointer, pointer subscript notation and point-
er/offset notation.

ANS: values[4], *(values + 4), vPtr[4], *(vPtr + 4)
i) What address is referenced by vPtr + 3? What value is stored at that location?
ANS: The address of the location pertaining to values[3] (i.e., 1002506). 8.
j) Assuming that vPtr points to values[4], what address is referenced by vPtr -= 4? What

value is stored at that location?
ANS: The address of where values begins in memory (i.e., 1002500). 2.

8.9 (Write C++ Statements) For each of the following, write a single statement that performs
the specified task. Assume that long variables value1 and value2 have been declared and value1 has
been initialized to 200000.

a) Declare the variable longPtr to be a pointer to an object of type long.
ANS: long* longPtr;
b) Assign the address of variable value1 to pointer variable longPtr.
ANS: longPtr = &value1;
c) Display the value of the object pointed to by longPtr.
ANS: cout << *longPtr << '\n';
d) Assign the value of the object pointed to by longPtr to variable value2.
ANS: value2 = *longPtr;
e) Display the value of value2.
ANS: cout << value2 << '\n';
f) Display the address of value1.
ANS: cout << &value1 << '\n';

cpphtp10_08.fm Page 5 Wednesday, August 3, 2016 4:28 PM

6 Chapter 8 Pointers

g) Display the address stored in longPtr. Is the address displayed the same as value1’s?
ANS: cout << longPtr << '\n'; yes.

8.10 (Function Headers and Prototypes) Perform the task in each of the following:
a) Write the function header for function zero that takes a long integer built-in array

parameter bigIntegers and a second parameter representing the array’s size and does
not return a value.

ANS: void zero(long bigIntegers[], unsigned int size) or
void zero(long *bigIntegers, unsigned int size)

b) Write the function prototype for the function in part (a).
ANS: void zero(long bigIntegers[], unsigned int size); or

void zero(long *bigIntegers, unsigned int size);
c) Write the function header for function add1AndSum that takes an integer built-in array

parameter oneTooSmall and a second parameter representing the array’s size and returns
an integer.

ANS: int add1AndSum(int oneTooSmall[], unsigned int size) or
int add1AndSum(int *oneTooSmall, unsigned int size)

d) Write the function prototype for the function described in part (c).
ANS: int add1AndSum(int oneTooSmall[], unsigned int size); or

int add1AndSum(int *oneTooSmall, unsigned int size);

8.11 (Find the Code Errors) Find the error in each of the following segments. If the error can be
corrected, explain how.

a) int* number;

cout << number << endl;
ANS: Pointer number does not "point" to a valid address—assigning a valid address of an

int to number would correct this the problem. Also, number is not dereferenced in the
output statement.

b) double* realPtr;

long* integerPtr;

integerPtr = realPtr;
ANS: A pointer of type double cannot be directly assigned to a pointer of type long.
c) int* x, y;

x = y;
ANS: Variable y is not a pointer, and therefore cannot be assigned to x. Change the assign-

ment statement to x = &y; or declare y as a pointer.
d) char s[]{"this is a character array"};

for (; *s != '\0'; ++s) {

 cout << *s << ' ';

}
ANS: s is not a modifiable value. Attempting to use operator ++ is a syntax error. Changing

to [] notation corrects the problem as in:
 for (int t{0}; s[t] != '\0'; ++t)
 cout << s[t] << ' ';

e) short* numPtr, result;

void* genericPtr{numPtr};

result = *genericPtr + 7;
ANS: A void * pointer cannot be dereferenced.

cpphtp10_08.fm Page 6 Wednesday, August 3, 2016 4:28 PM

 Exercises 7

f) double x = 19.34;
double xPtr{&x};
cout << xPtr << endl;

ANS: xPtr is not a pointer and therefore cannot be assigned an address. Change xPtr’s type
to double* to correct the problem. The cout statement display’s the address to which
xPtr points (once the previous correction is made)—this is not an error, but normally
you’d output the value of what the pointer points to, not the address stored in the
pointer.

8.13 (What Does This Code Do?) What does this program do?

ANS:

1 // Ex. 8.13: ex08_13.cpp
2 // What does this program do?
3 #include <iostream>
4 using namespace std;
5
6 void mystery1(char*, const char*); // prototype
7
8 int main() {
9 char string1[80];

10 char string2[80];
11
12 cout << "Enter two strings: ";
13 cin >> string1 >> string2;
14 mystery1(string1, string2);
15 cout << string1 << endl;
16 }
17
18 // What does this function do?
19 void mystery1(char* s1, const char* s2) {
20 while (*s1 != '\0') {
21 ++s1;
22 }
23
24 for (; (*s1 = *s2); ++s1, ++s2) {
25 ; // empty statement
26 }
27 }

Fig. 8.1 | What does this program do?

Enter two strings: string1 string2
string1string2

cpphtp10_08.fm Page 7 Wednesday, August 3, 2016 4:28 PM

8 Chapter 8 Pointers

8.14 (What Does This Code Do?) What does this program do?

ANS:

Special Section: Building Your Own Computer
In the next several problems, we take a temporary diversion away from the world of high-level-lan-
guage programming. We “peel open” a simple hypothetical computer and look at its internal struc-
ture. We introduce machine-language programming and write several machine-language programs.
To make this an especially valuable experience, we then build a computer (using software-based
simulation) on which you can execute your machine-language programs!1

8.15 (Machine-Language Programming) Let’s create a computer we’ll call the Simpletron. As its
name implies, it’s a simple machine, but, as we’ll soon see, it’s a powerful one as well. The Sim-
pletron runs programs written in the only language it directly understands, that is, Simpletron Ma-
chine Language, or SML for short.

The Simpletron contains an accumulator—a “special register” in which information is put
before the Simpletron uses that information in calculations or examines it in various ways. All

1 // Ex. 8.14: ex08_14.cpp
2 // What does this program do?
3 #include <iostream>
4 using namespace std;
5
6 int mystery2(const char*); // prototype
7
8 int main() {
9 char string1[80];

10
11 cout << "Enter a string: ";
12 cin >> string1;
13 cout << mystery2(string1) << endl;
14 }
15
16 // What does this function do?
17 int mystery2(const char* s) {
18 unsigned int x;
19
20 for (x = 0; *s != '\0'; ++s) {
21 ++x;
22 }
23
24 return x;
25 }

Fig. 8.2 | What does this program do?

Enter a string: length
6

1. In Exercises 19.30–19.34, we’ll “peel open” a simple hypothetical compiler that will translate state-
ments in a simple high-level language to the machine language you use here. You’ll write programs
in that high-level language, compile them into machine language and run that machine language on
your computer simulator.

cpphtp10_08.fm Page 8 Wednesday, August 3, 2016 4:28 PM

 Special Section: Building Your Own Computer 9

information in the Simpletron is handled in terms of words. A word is a signed four-digit decimal
number, such as +3364, -1293, +0007, -0001, etc. The Simpletron is equipped with a 100-word
memory, and these words are referenced by their location numbers 00, 01, …, 99.

Before running an SML program, we must load, or place, the program into memory. The first
instruction (or statement) of every SML program is always placed in location 00. The simulator
will start executing at this location.

Each instruction written in SML occupies one word of the Simpletron’s memory; thus,
instructions are signed four-digit decimal numbers. Assume that the sign of an SML instruction is
always plus, but the sign of a data word may be either plus or minus. Each location in the Sim-
pletron’s memory may contain an instruction, a data value used by a program or an unused (and
hence undefined) area of memory. The first two digits of each SML instruction are the operation
code that specifies the operation to be performed. SML operation codes are shown in Fig. 8.3.

Operation code Meaning

Input/output operations

const int read{10}; Read a word from the keyboard into a specific location in
memory.

const int write{11}; Write a word from a specific location in memory to the
screen.

Load and store operations

const int load{20}; Load a word from a specific location in memory into the
accumulator.

const int store{21}; Store a word from the accumulator into a specific location
in memory.

Arithmetic operations

const int add{30}; Add a word from a specific location in memory to the word
in the accumulator (leave result in accumulator).

const int subtract{31}; Subtract a word from a specific location in memory from
the word in the accumulator (leave result in accumulator).

const int divide{32}; Divide a word from a specific location in memory into the
word in the accumulator (leave result in accumulator).

const int multiply{33}; Multiply a word from a specific location in memory by the
word in the accumulator (leave result in accumulator).

Transfer-of-control operations

const int branch{40}; Branch to a specific location in memory.

const int branchneg{41}; Branch to a specific location in memory if the accumulator
is negative.

const int branchzero{42}; Branch to a specific location in memory if the accumulator
is zero.

const int halt{43}; Halt—the program has completed its task.

Fig. 8.3 | Simpletron Machine Language (SML) operation codes.

cpphtp10_08.fm Page 9 Wednesday, August 3, 2016 4:28 PM

10 Chapter 8 Pointers

The last two digits of an SML instruction are the operand—the address of the memory loca-
tion containing the word to which the operation applies.

Now let’s consider two simple SML programs. The first (Fig. 8.4) reads two numbers from the
keyboard and computes and displays their sum. The instruction +1007 reads the first number from
the keyboard and places it into location 07 (which has been initialized to zero). Instruction +1008
reads the next number into location 08. The load instruction, +2007, places (copies) the first num-
ber into the accumulator, and the add instruction, +3008, adds the second number to the number
in the accumulator. All SML arithmetic instructions leave their results in the accumulator. The store
instruction, +2109, places (copies) the result back into memory location 09. Then the write instruc-
tion, +1109, takes the number and displays it (as a signed four-digit decimal number). The halt
instruction, +4300, terminates execution.

The SML program in Fig. 8.5 reads two numbers from the keyboard, then determines and
displays the larger value. Note the use of the instruction +4107 as a conditional transfer of control,
much the same as C++’s if statement.

Location Number Instruction

00 +1007 (Read A)
01 +1008 (Read B)
02 +2007 (Load A)
03 +3008 (Add B)
04 +2109 (Store C)
05 +1109 (Write C)
06 +4300 (Halt)
07 +0000 (Variable A)
08 +0000 (Variable B)
09 +0000 (Result C)

Fig. 8.4 | SML Example 1.

Location Number Instruction

00 +1009 (Read A)
01 +1010 (Read B)
02 +2009 (Load A)
03 +3110 (Subtract B)
04 +4107 (Branch negative to 07)
05 +1109 (Write A)
06 +4300 (Halt)
07 +1110 (Write B)
08 +4300 (Halt)
09 +0000 (Variable A)
10 +0000 (Variable B)

Fig. 8.5 | SML Example 2.

cpphtp10_08.fm Page 10 Wednesday, August 3, 2016 4:28 PM

 Special Section: Building Your Own Computer 11

Now write SML programs to accomplish each of the following tasks:
a) Use a sentinel-controlled loop to read positive numbers and compute and display their

sum. Terminate input when a negative number is entered.
ANS:

00 +1009 (Read Value)
01 +2009 (Load Value)
02 +4106 (Branch negative to 06)
03 +3008 (Add Sum)
04 +2108 (Store Sum)
05 +4000 (Branch 00)
06 +1108 (Write Sum)
07 +4300 (Halt)
08 +0000 (Storage for Sum)
09 +0000 (Storage for Value)

b) Use a counter-controlled loop to read seven numbers, some positive and some negative,
and compute and display their average.

ANS:

00 +2018 (Load Counter)
01 +3121 (Subtract Termination)
02 +4211 (Branch zero to 11)
03 +2018 (Load Counter)
04 +3019 (Add Increment)
05 +2118 (Store Counter)
06 +1017 (Read Value)
07 +2016 (Load Sum)
08 +3017 (Add Value)
09 +2116 (Store Sum)
10 +4000 (Branch 00)
11 +2016 (Load Sum)
12 +3218 (Divide Counter)
13 +2120 (Store Result)
14 +1120 (Write Result)
15 +4300 (Halt)
16 +0000 (Variable Sum)
17 +0000 (Variable Value)
18 +0000 (Variable Counter)
19 +0001 (Variable Increment)
20 +0000 (Variable Result)
21 +0007 (Variable Termination)

c) Read a series of numbers, and determine and display the largest number. The first num-
ber read indicates how many numbers should be processed.

ANS:

00 +1017 (Read Endvalue)
01 +2018 (Load Counter)
02 +3117 (Subtract Endvalue)
03 +4215 (Branch zero to 15)
04 +2018 (Load Counter)
05 +3021 (Add Increment)
06 +2118 (Store Counter)
07 +1019 (Read Value)
08 +2020 (Load Largest)
09 +3119 (Subtract Value)
10 +4112 (Branch negative to 12)
11 +4001 (Branch 01)
12 +2019 (Load Value)
13 +2120 (Store Largest)
14 +4001 (Branch 01)

cpphtp10_08.fm Page 11 Wednesday, August 3, 2016 4:28 PM

12 Chapter 8 Pointers

15 +1120 (Write Largest)
16 +4300 (Halt)
17 +0000 (Variable EndValue)
18 +0000 (Variable Counter)
19 +0000 (Variable Value)
20 +0000 (Variable Largest)
21 +0001 (Variable Increment)

cpphtp10_08.fm Page 12 Wednesday, August 3, 2016 4:28 PM

