
9Classes: A Deeper Look

O b j e c t i v e s
In this chapter you’ll:

■ Engineer a class to separate
its interface from its
implementation and
encourage reuse.

■ Access class members via an
object’s name or a reference
using the dot (.) operator.

■ Access class members via a
pointer to an object using the
arrow (->) operator.

■ Use destructors to perform
“termination housekeeping.”

■ Learn the order of constructor
and destructor calls.

■ Learn about the dangers of
returning a reference or a
pointer to private data.

■ Assign the data members of
one object to those of
another object.

■ Create objects composed of
other objects.

■ Use friend functions and
learn how to declare friend
classes.

■ Use the this pointer in a
member function to access a
non-static class member.

■ Use static data members
and member functions.

cpphtp10.book Page 1 Tuesday, September 6, 2016 7:06 PM

2 Chapter 9 Classes: A Deeper Look

Self-Review Exercises
9.1 Fill in the blanks in each of the following:

a) Class members are accessed via the operator in conjunction with the name of
an object (or reference to an object) of the class or via the operator in conjunc-
tion with a pointer to an object of the class.

ANS: dot (.), arrow (->).
b) Class members specified as are accessible only to member functions of the

class and friends of the class.
ANS: private.
c) class members are accessible anywhere an object of the class is in scope.
ANS: public.
d) can be used to assign an object of a class to another object of the same class.
ANS: Default memberwise assignment (performed by the assignment operator).
e) A nonmember function must be declared by the class as a(n) of a class to have

access to that class’s private data members.
ANS: friend.
f) A constant object must be ; it cannot be modified after it’s created.
ANS: initialized.
g) A(n) data member represents classwide information.
ANS: static.
h) An object’s non-static member functions have access to a “self pointer” to the object

called the pointer.
ANS: this.
i) Keyword specifies that an object or variable is not modifiable.
ANS: const.
j) If a member initializer is not provided for a member object of a class, the object's

 is called.
ANS: default constructor.
k) A member function should be static if it does not access class members.
ANS: non-static.
l) Member objects are constructed their enclosing class object.
ANS: before.
m) When a member function is defined outside the class definition, the function header

must include the class name and the , followed by the function name to “tie”
the member function to the class definition.

ANS: :: scope resolution operator.

9.2 Find the error(s) in each of the following and explain how to correct it (them):
a) Assume the following prototype is declared in class Time:

void ~Time(int);

ANS: Error: Destructors are not allowed to return values (or even specify a return type) or
take arguments.
Correction: Remove the return type void and the parameter int from the declaration.

b) Assume the following prototype is declared in class Employee:

int Employee(string, string);

ANS: Error: Constructors are not allowed to return values.
Correction: Remove the return type int from the declaration.

c) The following is a definition of class Example:

cpphtp10.book Page 2 Tuesday, September 6, 2016 7:06 PM

 Exercises 3

class Example {
public:
 Example(int y = 10) : data(y) { }

 int getIncrementedData() const {
 return ++data;
 }

 static int getCount() {
 cout << "Data is " << data << endl;

 return count;
 }

private:
 int data;
 static int count;
};

ANS: Error: The class definition for Example has two errors. The first occurs in function
getIncrementedData. The function is declared const, but it modifies the object.
Correction: To correct the first error, remove the const keyword from the definition
of getIncrementedData. [Note: It would also be appropriate to rename this member
function, as get functions are typically const member functions.]
Error: The second error occurs in function getCount. This function is declared stat-
ic, so it’s not allowed to access any non-static class member (i.e., data).
Correction: To correct the second error, remove the output line from the getCount def-
inition.

Exercises
9.3 (Scope Resolution Operator) What’s the purpose of the scope resolution operator?

ANS: The scope resolution operator is used to specify the class to which a function belongs.
It resolves the ambiguity caused by multiple classes having member functions of the
same name. It also associates a member function in a .cpp file with a class definition
in a .h file.

9.16 (Friendship) Explain the notion of friendship. Explain the negative aspects of friendship as
described in the text.

ANS: Functions that are declared as friends of a class have access to that class’s private
and protected members. Some people in the object-oriented programming commu-
nity prefer not to use friend functions. Such people believe friendship corrupts in-
formation hiding and weakens the value of the object-oriented design approach,
because friend functions can directly access a class’s implementation details that are
supposed to be hidden.

9.17 (Constructor Overloading) Can a Time class definition that includes both of the following
constructors:

Time(int h = 0, int m = 0, int s = 0);
Time();

be used to default construct a Time object? If not, explain why.
ANS: No. There is ambiguity between the two constructors. When a call is made to the de-

fault constructor, the compiler cannot determine which one to use because both con-
structors can be called with no arguments.

cpphtp10.book Page 3 Tuesday, September 6, 2016 7:06 PM

4 Chapter 9 Classes: A Deeper Look

9.18 (Constructors and Destructors) What happens when a return type, even void, is specified
for a constructor or destructor?

ANS: A compilation error occurs. You cannot specify a return type for a constructor or de-
structor.

cpphtp10.book Page 4 Tuesday, September 6, 2016 7:06 PM

