
FC Legacy Code Topics

O b j e c t i v e s
In this appendix you’ll:

■ Redirect keyboard input to
come from a file and redirect
screen output to a file.

■ Write functions that use
variable-length argument
lists.

■ Process command-line
arguments.

■ Process unexpected events
within a program.

■ Allocate memory
dynamically for arrays, using
C-style dynamic memory
allocation.

■ Resize memory dynamically
allocated using C-style
dynamic memory allocation.

cpphtp10_appF_LegacyCode.fm Page 1 Thursday, August 4, 2016 4:22 PM

F_2 Chapter F C Legacy Code Topics

F.1 Introduction
This appendix presents several topics not ordinarily covered in introductory courses.
Many of the capabilities discussed here are specific to particular operating systems, espe-
cially UNIX/LINUX/Mac OS X and/or Windows. Much of the material is for the benefit
of C++ programmers who will need to work with older C legacy code.

F.2 Redirecting Input/Output on UNIX/Linux/
Mac OS X and Windows Systems
Normally, the input to a program is from the keyboard (standard input), and the output
from a program is displayed on the screen (standard output). On most computer sys-
tems—UNIX, LINUX, Mac OS X and Windows systems in particular—it is possible to
redirect inputs to come from a file, and redirect outputs to be placed in a file. Both forms
of redirection can be accomplished without using the file-processing capabilities of the
standard library.

There are several ways to redirect input and output from the UNIX command line.
Consider the executable file sum that inputs integers one at a time, keeps a running total
of the values until the end-of-file indicator is set, then prints the result. Normally the user
inputs integers from the keyboard and enters the end-of-file key combination to indicate
that no further values will be input. With input redirection, the input can be stored in a
file. For example, if the data are stored in file input, the command line

causes program sum to be executed; the redirect input symbol (<) indicates that the data
in file input (instead of the keyboard) is to be used as input by the program. Redirecting
input in a Windows Command Prompt is performed identically.

Note that $ represents the UNIX command-line prompt. (UNIX prompts vary from
system to system and between shells on a single system.) Redirection is an operating-
system function, not another C++ feature.

The second method of redirecting input is piping. A pipe (|) causes the output of
one program to be redirected as the input to another program. Suppose program random

F.1 Introduction
F.2 Redirecting Input/Output on UNIX/

Linux/Mac OS X and Windows
Systems

F.3 Variable-Length Argument Lists
F.4 Using Command-Line Arguments
F.5 Notes on Compiling Multiple-Source-

File Programs
F.6 Program Termination with exit and

atexit

F.7 Type Qualifier volatile
F.8 Suffixes for Integer and Floating-Point

Constants
F.9 Signal Handling

F.10 Dynamic Memory Allocation with
calloc and realloc

F.11 Unconditional Branch: goto
F.12 Unions
F.13 Linkage Specifications
F.14 Wrap-Up

Summary | Self-Review Exercise | Answers to Self-Review Exercise | Exercises

$ sum < input

cpphtp10_appF_LegacyCode.fm Page 2 Thursday, August 4, 2016 4:22 PM

F.3 Variable-Length Argument Lists F_3

outputs a series of random integers; the output of random can be “piped” directly to pro-
gram sum using the UNIX command line

This causes the sum of the integers produced by random to be calculated. Piping can be
performed in UNIX, LINUX, Mac OS X and Windows.

Program output can be redirected to a file by using the redirect output symbol (>).
(The same symbol is used for UNIX, LINUX, Mac OS X and Windows.) For example, to
redirect the output of program random to a new file called out, use

Finally, program output can be appended to the end of an existing file by using the
append output symbol (>>). (The same symbol is used for UNIX, LINUX, Mac OS X
and Windows.) For example, to append the output from program random to file out cre-
ated in the preceding command line, use the command line

F.3 Variable-Length Argument Lists
It is possible to create functions that receive an unspecified number of arguments.1 An el-
lipsis (...) in a function’s prototype indicates that the function receives a variable number
of arguments of any type.1 Note that the ellipsis must always be placed at the end of the
parameter list, and there must be at least one argument before the ellipsis. The macros and
definitions of the variable arguments header <cstdarg> (Fig. F.1) provide the capabili-
ties necessary to build functions with variable-length argument lists.

$ random | sum

$ random > out

$ random >> out

1. In C++, programmers use function overloading to accomplish much of what C programmers accom-
plish with variable-length argument lists.

Identifier Description

va_list A type suitable for holding information needed by macros va_start,
va_arg and va_end. To access the arguments in a variable-length argu-
ment list, an object of type va_list must be declared.

va_start A macro that is invoked before the arguments of a variable-length
argument list can be accessed. The macro initializes the object declared
with va_list for use by the va_arg and va_end macros.

va_arg A macro that expands to an expression of the value and type of the next
argument in the variable-length argument list. Each invocation of
va_arg modifies the object declared with va_list so that the object
points to the next argument in the list.

va_end A macro that performs termination housekeeping in a function whose
variable-length argument list was referred to by the va_start macro.

Fig. F.1 | The type and the macros defined in header <cstdarg>.

cpphtp10_appF_LegacyCode.fm Page 3 Thursday, August 4, 2016 4:22 PM

F_4 Chapter F C Legacy Code Topics

Figure F.2 demonstrates function average that receives a variable number of argu-
ments. The first argument of average is always the number of values to be averaged, and
the remainder of the arguments must all be of type double.

Function average uses all the definitions and macros of header <cstdarg>. Object
list, of type va_list, is used by macros va_start, va_arg and va_end to process the vari-

1 // Fig. F.2: figF_02.cpp
2 // Using variable-length argument lists.
3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8
9

10 int main()
11 {
12 double double1 = 37.5;
13 double double2 = 22.5;
14 double double3 = 1.7;
15 double double4 = 10.2;
16
17 cout << fixed << setprecision(1) << "double1 = "
18 << double1 << "\ndouble2 = " << double2 << "\ndouble3 = "
19 << double3 << "\ndouble4 = " << double4 << endl
20 << setprecision(3)
21 << "\nThe average of double1 and double2 is "
22 << average(2, double1, double2)
23 << "\nThe average of double1, double2, and double3 is "
24 << average(3, double1, double2, double3)
25 << "\nThe average of double1, double2, double3"
26 << " and double4 is "
27 << average(4, double1, double2, double3, double4)
28 << endl;
29 } // end main
30
31 // calculate average
32 double average(int count,)
33 {
34 double total = 0;
35
36
37
38
39 // process variable-length argument list
40 for (int i = 1; i <= count; i++)
41
42
43 va_end(list); // end the va_start
44 return total / count;
45 } // end function average

Fig. F.2 | Using variable-length argument lists. (Part 1 of 2.)

#include <cstdarg>

double average(int, ...);

...

va_list list; // for storing information needed by va_start

va_start(list, count);

total += va_arg(list, double);

cpphtp10_appF_LegacyCode.fm Page 4 Thursday, August 4, 2016 4:22 PM

F.4 Using Command-Line Arguments F_5

able-length argument list of function average. The function invokes va_start to initialize
object list for use in va_arg and va_end. The macro receives two arguments—object
list and the identifier of the rightmost argument in the argument list before the ellipsis—
count in this case (va_start uses count here to determine where the variable-length argu-
ment list begins).

Next, function average repeatedly adds the arguments in the variable-length argu-
ment list to the total. The value to be added to total is retrieved from the argument list
by invoking macro va_arg. Macro va_arg receives two arguments—object list and the
type of the value expected in the argument list (double in this case)—and returns the value
of the argument. Function average invokes macro va_end with object list as an argu-
ment before returning. Finally, the average is calculated and returned to main. Note that
we used only double arguments for the variable-length portion of the argument list.

Variable-length argument lists promote variables of type float to type double. These
argument lists also promote integral variables that are smaller than int to type int (vari-
ables of type int, unsigned, long and unsigned long are left alone).

F.4 Using Command-Line Arguments
On many systems it is possible to pass arguments to main from a command line by includ-
ing parameters int argc and char *argv[] in the parameter list of main. Parameter argc
receives the number of command-line arguments. Parameter argv is an array of char *’s
pointing to strings in which the actual command-line arguments are stored. Common uses
of command-line arguments include printing the arguments, passing options to a program
and passing filenames to a program.

double1 = 37.5
double2 = 22.5
double3 = 1.7
double4 = 10.2

The average of double1 and double2 is 30.000
The average of double1, double2, and double3 is 20.567
The average of double1, double2, double3 and double4 is 17.975

Software Engineering Observation F.1
Variable-length argument lists can be used only with fundamental-type arguments and
with struct-type arguments that do not contain C++ specific features such as virtual
functions, constructors, destructors, references, const data members and virtual base
classes.

Common Programming Error F.1
Placing an ellipsis in the middle of a function parameter list is a syntax error. An ellipsis
may be placed only at the end of the parameter list.

Fig. F.2 | Using variable-length argument lists. (Part 2 of 2.)

cpphtp10_appF_LegacyCode.fm Page 5 Thursday, August 4, 2016 4:22 PM

F_6 Chapter F C Legacy Code Topics

Figure F.3 copies a file into another file one character at a time. The executable file
for the program is called copyFile (i.e., the executable name for the file). A typical com-
mand line for the copyFile program on a UNIX system is

This command line indicates that file input is to be copied to file output. When the pro-
gram executes, if argc is not 3 (copyFile counts as one of the arguments), the program
prints an error message (line 11). Otherwise, array argv contains the strings "copyFile",
"input" and "output". The second and third arguments on the command line are used
as file names by the program. The files are opened by creating ifstream object inFile and
ofstream object outFile (lines 14 and 23). If both files are opened successfully, characters
are read from file input with member function get and written to file output with mem-
ber function put until the end-of-file indicator for file input is set (lines 35–39). Then the
program terminates. The result is an exact copy of file input. Note that not all computer
systems support command-line arguments as easily as UNIX, LINUX, Mac OS X and
Windows. Some VMS and older Macintosh systems, for example, require special settings
for processing command-line arguments. See the manuals for your system for more infor-
mation on command-line arguments.

$ copyFile input output

1 // Fig. F.3: figF_03.cpp
2 // Using command-line arguments
3 #include <iostream>
4 #include <fstream>
5 using namespace std;
6
7 int main()l
8 {
9 // check number of command-line arguments

10 if ()
11 cout << "Usage: copyFile infile_name outfile_name" << endl;
12 else
13 {
14 ifstream inFile(, ios::in);
15
16 // input file could not be opened
17 if (!inFile)
18 {
19 cout << << " could not be opened" << endl;
20 return -1;
21 } // end if
22
23 ofstream outFile(, ios::out);
24
25 // output file could not be opened
26 if (!outFile)
27 {
28 cout << << " could not be opened" << endl;
29 inFile.close();
30 return -2;
31 } // end if

Fig. F.3 | Using command-line arguments. (Part 1 of 2.)

int argc, char *argv[]

argc != 3

argv[1]

argv[1]

argv[2]

argv[2]

cpphtp10_appF_LegacyCode.fm Page 6 Thursday, August 4, 2016 4:22 PM

F.5 Notes on Compiling Multiple-Source-File Programs F_7

F.5 Notes on Compiling Multiple-Source-File Programs
As stated earlier in the text, it is normal to build programs that consist of multiple source
files. There are several considerations when creating programs in multiple files. For exam-
ple, the definition of a function must be entirely contained in one file—it cannot span two
or more files.

In Chapter 6, we introduced the concepts of storage duration and scope. We learned
that variables declared outside any function definition are of static storage duration by
default and are referred to as global variables. Global variables are accessible to any func-
tion defined in the same file after the variable is declared. Global variables also are acces-
sible to functions in other files; however, the global variables must be declared in each file
in which they are used. For example, if we define global integer variable flag in one file,
and refer to it in a second file, the second file must contain the declaration

prior to the variable’s use in that file. In the preceding declaration, the storage class-spec-
ifier extern indicates to the compiler that variable flag is defined either later in the same
file or in a different file. The compiler informs the linker that unresolved references to vari-
able flag appear in the file. (The compiler does not know where flag is defined, so it lets
the linker attempt to find flag.) If the linker cannot locate a definition of flag, a linker
error is reported. If a proper global definition is located, the linker resolves the references
by indicating where flag is located.

Just as extern declarations can be used to declare global variables to other program files,
function prototypes can be used to declare functions in other program files. (The extern
specifier is not required in prototypes.) This is accomplished by including the function pro-

32
33 char c = inFile.get(); // read first character
34
35 while (inFile)
36 {
37 outFile.put(c); // output character
38 c = inFile.get(); // read next character
39 } // end while
40 } // end else
41 } // end main

extern int flag;

Performance Tip F.1
Global variables increase performance because they can be accessed directly by any func-
tion—the overhead of passing data to functions is eliminated.

Software Engineering Observation F.2
Global variables should be avoided unless application performance is critical or the
variable represents a shared global resource such as cin, because they violate the principle
of least privilege, and they make software difficult to maintain.

Fig. F.3 | Using command-line arguments. (Part 2 of 2.)

cpphtp10_appF_LegacyCode.fm Page 7 Thursday, August 4, 2016 4:22 PM

F_8 Chapter F C Legacy Code Topics

totype in each file in which the function is invoked, then compiling each source file and
linking the resulting object code files together. Function prototypes indicate to the compiler
that the specified function is defined either later in the same file or in a different file. The
compiler does not attempt to resolve references to such a function—that task is left to the
linker. If the linker cannot locate a function definition, an error is generated.

As an example of using function prototypes to extend the scope of a function, consider
any program containing the preprocessor directive #include <cstring>. This directive
includes in a file the function prototypes for functions such as strcmp and strcat. Other
functions in the file can use strcmp and strcat to accomplish their tasks. The strcmp and
strcat functions are defined for us separately. We do not need to know where they are
defined. We are simply reusing the code in our programs. The linker resolves our references
to these functions. This process enables us to use the functions in the standard library.

It is possible to restrict the scope of a global variable or function to the file in which
it is defined. The storage-class specifier static, when applied to a global namespace scope
variable or a function, prevents it from being used by any function that is not defined in
the same file. This is referred to as internal linkage. Global variables (except those that
are const) and functions that are not preceded by static in their definitions have external
linkage—they can be accessed in other files if those files contain proper declarations and/
or function prototypes.

The global variable declaration

creates variable pi of type double, initializes it to 3.14159 and indicates that pi is known
only to functions in the file in which it is defined.

The static specifier is commonly used with utility functions that are called only by
functions in a particular file. If a function is not required outside a particular file, the prin-
ciple of least privilege should be enforced by using static. If a function is defined before
it is used in a file, static should be applied to the function definition. Otherwise, static
should be applied to the function prototype. Identifiers defined in the unnamed
namespace also have internal linkage. The C++ standard recommends using the unnamed
namespace rather than static.

When building large programs from multiple source files, compiling the program
becomes tedious if making small changes to one file means that the entire program must

Software Engineering Observation F.3
Creating programs in multiple source files facilitates software reusability and good
software engineering. Functions may be common to many applications. In such instances,
those functions should be stored in their own source files, and each source file should have
a corresponding header file containing function prototypes. This enables programmers of
different applications to reuse the same code by including the proper header file and
compiling their application with the corresponding source file.

Portability Tip F.1
Some systems do not support global variable names or function names of more than six
characters. This should be considered when writing programs that will be ported to mul-
tiple platforms.

static double pi = 3.14159;

cpphtp10_appF_LegacyCode.fm Page 8 Thursday, August 4, 2016 4:22 PM

F.6 Program Termination with exit and atexit F_9

be recompiled. Many systems provide special utilities that recompile only source files
dependent on the modified program file. On UNIX systems, the utility is called make.
Utility make reads a file called Makefile that contains instructions for compiling and
linking the program. Systems such as Borland C++ and Microsoft Visual C++ for PCs pro-
vide make utilities and “projects.” For more information on make utilities, see the manual
for your particular system.

F.6 Program Termination with exit and atexit
The general utilities library (<cstdlib>) provides methods of terminating program execu-
tion other than a conventional return from main. Function exit forces a program to ter-
minate as if it executed normally. The function often is used to terminate a program when
an error is detected or if a file to be processed by the program cannot be opened.

Function atexit registers a function in the program to be called when the program
terminates by reaching the end of main or when exit is invoked. Function atexit takes a
pointer to a function (i.e., the function name) as an argument. Functions called at pro-
gram termination cannot have arguments and cannot return a value.

Function exit takes one argument. The argument is normally the symbolic constant
EXIT_SUCCESS or EXIT_FAILURE. If exit is called with EXIT_SUCCESS, the implementa-
tion-defined value for successful termination is returned to the calling environment. If
exit is called with EXIT_FAILURE, the implementation-defined value for unsuccessful ter-
mination is returned. When function exit is invoked, any functions previously registered
with atexit are invoked in the reverse order of their registration, all streams associated
with the program are flushed and closed, and control returns to the host environment.
Figure F.4 tests functions exit and atexit. The program prompts the user to determine
whether the program should be terminated with exit or by reaching the end of main. Note
that function print is executed at program termination in each case.

1 // Fig. F.4: figF_04.cpp
2 // Using the exit and atexit functions
3 #include <iostream>
4 #include <cstdlib>
5 using namespace std;
6
7 void print();
8
9 int main()

10 {
11
12
13 cout << "Enter 1 to terminate program with function exit"
14 << "\nEnter 2 to terminate program normally\n";
15
16 int answer;
17 cin >> answer;
18

Fig. F.4 | Using functions exit and atexit. (Part 1 of 2.)

atexit(print); // register function print

cpphtp10_appF_LegacyCode.fm Page 9 Thursday, August 4, 2016 4:22 PM

F_10 Chapter F C Legacy Code Topics

Terminating a program with function exit runs the destructors for only the static and
global objects in the program. Terminating with function abort ends the program
without running any destructors.

F.7 Type Qualifier volatile
The volatile type qualifier is applied to a definition of a variable that may be altered from
outside the program (i.e., the variable is not completely under the control of the program).
Thus, the compiler cannot perform optimizations (such as speeding program execution or
reducing memory consumption, for example) that depend on “knowing that a variable’s
behavior is influenced only by program activities the compiler can observe.”

F.8 Suffixes for Integer and Floating-Point Constants
C++ provides integer and floating-point suffixes for specifying the types of integer and
floating-point constants. The integer suffixes are: u or U for an unsigned integer, l or L for

19 // exit if answer is 1
20 if (answer == 1)
21 {
22 cout << "\nTerminating program with function exit\n";
23
24 } // end if
25
26 cout << "\nTerminating program by reaching the end of main"
27 << endl;
28 } // end main
29
30
31
32
33
34
35

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
2

Terminating program by reaching the end of main
Executing function print at program termination
Program terminated

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
1

Terminating program with function exit
Executing function print at program termination
Program terminated

Fig. F.4 | Using functions exit and atexit. (Part 2 of 2.)

exit(EXIT_SUCCESS);

// display message before termination
void print()
{
 cout << "Executing function print at program termination\n"
 << "Program terminated" << endl;
} // end function print

cpphtp10_appF_LegacyCode.fm Page 10 Thursday, August 4, 2016 4:22 PM

F.9 Signal Handling F_11

a long integer, and ul or UL for an unsigned long integer. The following constants are of
type unsigned, long and unsigned long, respectively:

If an integer constant is not suffixed, its type is int; if the constant cannot be stored in an
int, it is stored in a long.

The floating-point suffixes are f or F for a float and l or L for a long double. The
following constants are of type long double and float, respectively:

A floating-point constant that is not suffixed is of type double. A constant with an im-
proper suffix results in either a compiler warning or an error.

F.9 Signal Handling
An unexpected event, or signal, can terminate a program prematurely. Such events in-
clude interrupts (pressing <Ctrl> C on a UNIX, LINUX, Mac OS X or Windows system),
illegal instructions, segmentation violations, termination orders from the operating
system and floating-point exceptions (division by zero or multiplying large floating-
point values). The signal-handling library provides function signal to trap unexpected
events. Function signal receives two arguments—an integer signal number and a pointer
to a signal-handling function. Signals can be generated by function raise, which takes an
integer signal number as an argument. Figure F.5 summarizes the standard signals defined
in header file <csignal>. The next example demonstrates functions signal and raise.

Figure F.6 traps an interactive signal (SIGINT) with function signal. The program
calls signal with SIGINT and a pointer to function signalHandler. (Recall that a func-
tion’s name is a pointer to that function.) When a signal of type SIGINT occurs, function
signalHandler is called, a message is printed and the user is given the option to continue
normal program execution. If the user wishes to continue execution, the signal handler is

174u
8358L
28373ul

3.14159L
1.28f

Signal Explanation

SIGABRT Abnormal termination of the program (such as a
call to abort).

SIGFPE An erroneous arithmetic operation, such as a divide
by zero or an operation resulting in overflow.

SIGILL Detection of an illegal instruction.

SIGINT Receipt of an interactive attention signal.

SIGSEGV An invalid access to storage.

SIGTERM A termination request sent to the program.

Fig. F.5 | Signals defined in header <csignal>.

cpphtp10_appF_LegacyCode.fm Page 11 Thursday, August 4, 2016 4:22 PM

F_12 Chapter F C Legacy Code Topics

reinitialized by calling signal again (some systems require the signal handler to be reini-
tialized), and control returns to the point in the program at which the signal was detected.
In this program, function raise is used to simulate an interactive signal. A random
number between 1 and 50 is chosen. If the number is 25, then raise is called to generate
the signal. Normally, interactive signals are initiated outside the program. For example,
pressing <Ctrl> C during program execution on a UNIX, LINUX, Mac OS X or Windows
system generates an interactive signal that terminates program execution. Signal handling
can be used to trap the interactive signal and prevent the program from terminating.

1 // Fig. F.6: figF_06.cpp
2 // Using signal handling
3 #include <iostream>
4 #include <iomanip>
5
6 #include <cstdlib>
7 #include <ctime>
8 using namespace std;
9

10 void signalHandler(int);
11
12 int main()
13 {
14
15 srand(time(0));
16
17 // create and output random numbers
18 for (int i = 1; i <= 100; i++)
19 {
20 int x = 1 + rand() % 50;
21
22 if (x == 25)
23
24
25 cout << setw(4) << i;
26
27 if (i % 10 == 0)
28 cout << endl; // output endl when i is a multiple of 10
29 } // end for
30 } // end main
31
32 // handles signal
33 void signalHandler(int signalValue)
34 {
35 cout << "\nInterrupt signal (" << signalValue
36 << ") received.\n"
37 << "Do you wish to continue (1 = yes or 2 = no)? ";
38
39 int response;
40
41 cin >> response;
42

Fig. F.6 | Using signal handling. (Part 1 of 2.)

#include <csignal>

signal(SIGINT, signalHandler);

raise(SIGINT); // raise SIGINT when x is 25

cpphtp10_appF_LegacyCode.fm Page 12 Thursday, August 4, 2016 4:22 PM

F.10 Dynamic Memory Allocation with calloc and realloc F_13

F.10 Dynamic Memory Allocation with calloc and
realloc
In Chapter 10, we discussed C++-style dynamic memory allocation with new and delete.
C++ programmers should use new and delete, rather than C’s functions malloc and free
(header <cstdlib>). However, most C++ programmers will find themselves reading a
great deal of C legacy code, and therefore we include this additional discussion on C-style
dynamic memory allocation.

The general utilities library (<cstdlib>) provides two other functions for dynamic
memory allocation—calloc and realloc. These functions can be used to create and
modify dynamic arrays. As shown in Chapter 8, a pointer to an array can be subscripted
like an array. Thus, a pointer to a contiguous portion of memory created by calloc can
be manipulated as an array. Function calloc dynamically allocates memory for an array
and initializes the memory to zeros. The prototype for calloc is

43 // check for invalid responses
44 while (response != 1 && response != 2)
45 {
46 cout << "(1 = yes or 2 = no)? ";
47 cin >> response;
48 } // end while
49
50 // determine if it is time to exit
51 if (response != 1)
52 exit(EXIT_SUCCESS);
53
54
55
56 } // end function signalHandler

 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93 94 95 96 97 98 99
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 1
 100

 1 2 3 4
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 2

void *calloc(size_t nmemb, size_t size);

Fig. F.6 | Using signal handling. (Part 2 of 2.)

// call signal and pass it SIGINT and address of signalHandler
signal(SIGINT, signalHandler);

cpphtp10_appF_LegacyCode.fm Page 13 Thursday, August 4, 2016 4:22 PM

F_14 Chapter F C Legacy Code Topics

It receives two arguments—the number of elements (nmemb) and the size of each element
(size)—and initializes the elements of the array to zero. The function returns a pointer to
the allocated memory or a null pointer (0) if the memory is not allocated.

Function realloc changes the size of an object allocated by a previous call to malloc,
calloc or realloc. The original object’s contents are not modified, provided that the
memory allocated is larger than the amount allocated previously. Otherwise, the contents
are unchanged up to the size of the new object. The prototype for realloc is

Function realloc takes two arguments—a pointer to the original object (ptr) and the
new size of the object (size). If ptr is 0, realloc works identically to malloc. If size is 0
and ptr is not 0, the memory for the object is freed. Otherwise, if ptr is not 0 and size is
greater than zero, realloc tries to allocate a new block of memory. If the new space cannot
be allocated, the object pointed to by ptr is unchanged. Function realloc returns either
a pointer to the reallocated memory or a null pointer.

F.11 Unconditional Branch: goto
Throughout the text we’ve stressed the importance of using structured programming tech-
niques to build reliable software that is easy to debug, maintain and modify. In some cases,
performance is more important than strict adherence to structured-programming tech-
niques. In these cases, some unstructured programming techniques may be used. For ex-
ample, we can use break to terminate execution of an iteration statement before the loop-
continuation condition becomes false. This saves unnecessary iterations of the loop if the
task is completed before loop termination.

Another instance of unstructured programming is the goto statement—an uncondi-
tional branch. The result of the goto statement is a change in the flow of control of the
program to the first statement after the label specified in the goto statement. A label is an
identifier followed by a colon. A label must appear in the same function as the goto state-
ment that refers to it. Figure F.7 uses goto statements to loop 10 times and print the
counter value each time. After initializing count to 1, the program tests count to deter-
mine whether it is greater than 10. (The label start is skipped, because labels do not per-
form any action.) If so, control is transferred from the goto to the first statement after the
label end. Otherwise, count is printed and incremented, and control is transferred from
the goto to the first statement after the label start.

void *realloc(void *ptr, size_t size);

Common Programming Error F.2
Runtime errors may occur if you use the delete operator on a pointer resulting from mal-
loc, calloc or realloc, or if you use realloc or free on a pointer resulting from the
new operator.

1 // Fig. F.7: figF_07.cpp
2 // Using goto.
3 #include <iostream>
4 #include <iomanip>

Fig. F.7 | Using goto. (Part 1 of 2.)

cpphtp10_appF_LegacyCode.fm Page 14 Thursday, August 4, 2016 4:22 PM

F.12 Unions F_15

In Chapter 4, we stated that only three control structures are required to write any
program—sequence, selection and iteration. When the rules of structured programming
are followed, it is possible to create deeply nested control structures from which it is diffi-
cult to escape efficiently. Some programmers use goto statements in such situations as a
quick exit from a deeply nested structure. This eliminates the need to test multiple condi-
tions to escape from a control structure.

F.12 Unions
A union (defined with keyword union) is a region of memory that, over time, can contain
objects of a variety of types. However, at any moment, a union can contain a maximum
of one object, because the members of a union share the same storage space. It is your re-
sponsibility to ensure that the data in a union is referenced with a member name of the
proper data type.

5 using namespace std;
6
7 int main()
8 {
9 int count = 1;

10
11
12 // goto end when count exceeds 10
13 if (count > 10)
14
15
16 cout << setw(2) << left << count;
17 ++count;
18
19
20
21
22
23 cout << endl;
24 } // end main

1 2 3 4 5 6 7 8 9 10

Performance Tip F.2
The goto statement can be used to exit deeply nested control structures efficiently but can
make code more difficult to read and maintain. Its use is strongly discouraged.

Error-Prevention Tip F.1
The goto statement should be used only in performance-oriented applications. The goto
statement is unstructured and can lead to programs that are more difficult to debug,
maintain, modify and understand.

Fig. F.7 | Using goto. (Part 2 of 2.)

start: // label

goto end;

// goto start on line 17
goto start;

end: // label

cpphtp10_appF_LegacyCode.fm Page 15 Thursday, August 4, 2016 4:22 PM

F_16 Chapter F C Legacy Code Topics

At different times during a program’s execution, some objects might not be relevant,
while one other object is—so a union shares the space instead of wasting storage on objects
that are not being used. The number of bytes used to store a union will be at least enough
to hold the largest member.

A union is declared in the same format as a struct or a class. For example,

indicates that Number is a union type with members int x and double y. The union defi-
nition must precede all functions in which it will be used.

The only valid built-in operations that can be performed on a union are assigning a
union to another union of the same type, taking the address (&) of a union and accessing
union members using the structure member operator (.) and the structure pointer oper-
ator (->). unions cannot be compared.

A union is similar to a class in that it can have a constructor to initialize any of its
members. A union that has no constructor can be initialized with another union of the
same type, with an expression of the type of the first member of the union or with an ini-
tializer (enclosed in braces) of the type of the first member of the union. unions can have

Common Programming Error F.3
The result of referencing a union member other than the last one stored is undefined. It
treats the stored data as a different type.

Portability Tip F.2
If data are stored in a union as one type and referenced as another type, the results are
implementation dependent.

Performance Tip F.3
Using unions conserves storage.

Portability Tip F.3
The amount of storage required to store a union is implementation dependent.

union Number
{
 int x;
 double y;
};

Software Engineering Observation F.4
Like a struct or a class declaration, a union declaration creates a new type. Placing a
union or struct declaration outside any function does not create a global variable.

Common Programming Error F.4
Comparing unions is a compilation error, because the compiler does not know which
member of each is active and hence which member of one to compare to which member of
the other.

cpphtp10_appF_LegacyCode.fm Page 16 Thursday, August 4, 2016 4:22 PM

F.12 Unions F_17

other member functions, such as destructors, but a union’s member functions cannot be
declared virtual. The members of a union are public by default.

A union cannot be used as a base class in inheritance (i.e., classes cannot be derived
from unions). unions can have objects as members only if these objects do not have a con-
structor, a destructor or an overloaded assignment operator. None of a union’s data mem-
bers can be declared static.

Figure F.8 uses the variable value of type union Number to display the value stored in
the union as both an int and a double. The program output is implementation depen-
dent. The program output shows that the internal representation of a double value can be
quite different from the representation of an int.

Common Programming Error F.5
Initializing a union in a declaration with a value or an expression whose type is different
from the type of the union’s first member is a compilation error.

1 // Fig. F.8: figF_08.cpp
2 // An example of a union.
3 #include <iostream>
4 using namespace std;
5
6
7
8
9

10
11
12
13 int main()
14 {
15
16
17
18
19 cout << "Put a value in the integer member\n"
20 << "and print both members.\nint: "
21 << << "\ndouble: " <<
22 << endl;
23
24
25
26 cout << "Put a value in the floating member\n"
27 << "and print both members.\nint: "
28 << << "\ndouble: " <<
29 << endl;
30 } // end main

Fig. F.8 | Printing the value of a union in both member data types. (Part 1 of 2.)

// define union Number
union Number
{
 int integer1;
 double double1;
}; // end union Number

Number value; // union variable

value.integer1 = 100; // assign 100 to member integer1

value.integer1 value.double1

value.double1 = 100.0; // assign 100.0 to member double1

value.integer1 value.double1

cpphtp10_appF_LegacyCode.fm Page 17 Thursday, August 4, 2016 4:22 PM

F_18 Chapter F C Legacy Code Topics

An anonymous union is a union without a type name that does not attempt to define
objects or pointers before its terminating semicolon. Such a union does not create a type
but does create an unnamed object. An anonymous union’s members may be accessed
directly in the scope in which the anonymous union is declared just as are any other local
variables—there is no need to use the dot (.) or arrow (->) operators.

Anonymous unions have some restrictions. Anonymous unions can contain only data
members. All members of an anonymous union must be public. And an anonymous
union declared globally (i.e., at global namespace scope) must be explicitly declared
static. Figure F.9 illustrates the use of an anonymous union.

Put a value in the integer member
and print both members.
int: 100
double: -9.25596e+061
Put a value in the floating member
and print both members.
int: 0
double: 100

1 // Fig. F.9: figF_09.cpp
2 // Using an anonymous union.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8
9

10
11
12
13
14
15
16
17 // declare local variables
18 int integer2 = 1;
19 double double2 = 3.3;
20 char *char2Ptr = "Anonymous";
21
22 // assign value to each union member
23 // successively and print each
24 cout << integer2 << ' ';
25
26 cout << integer1 << endl;
27

Fig. F.9 | Using an anonymous union. (Part 1 of 2.)

Fig. F.8 | Printing the value of a union in both member data types. (Part 2 of 2.)

// declare an anonymous union
// members integer1, double1 and charPtr share the same space
union
{
 int integer1;
 double double1;
 char *charPtr;
}; // end anonymous union

integer1 = 2;

cpphtp10_appF_LegacyCode.fm Page 18 Thursday, August 4, 2016 4:22 PM

F.13 Linkage Specifications F_19

F.13 Linkage Specifications
It is possible from a C++ program to call functions written and compiled with a C com-
piler. As stated in Section 6.18, C++ specially encodes function names for type-safe link-
age. C, however, does not encode its function names. Thus, a function compiled in C will
not be recognized when an attempt is made to link C code with C++ code, because the
C++ code expects a specially encoded function name. C++ enables you to provide linkage
specifications to inform the compiler that a function was compiled on a C compiler and
to prevent the name of the function from being encoded by the C++ compiler. Linkage
specifications are useful when large libraries of specialized functions have been developed,
and the user either does not have access to the source code for recompilation into C++ or
does not have time to convert the library functions from C to C++.

To inform the compiler that one or several functions have been compiled in C, write
the function prototypes as follows:

These declarations inform the compiler that the specified functions are not compiled in
C++, so name encoding should not be performed on the functions listed in the linkage
specification. These functions can then be linked properly with the program. C++ envi-
ronments normally include the standard C libraries and do not require you to use linkage
specifications for those functions.

F.14 Wrap-Up
This appendix introduced a number of C legacy-code topics. We discussed redirecting
keyboard input to come from a file and redirecting screen output to a file. We also intro-
duced variable-length argument lists, command-line arguments and processing of unex-
pected events. You also learned about allocating and resizing memory dynamically.

28 cout << double2 << ' ';
29
30 cout << double1 << endl;
31
32 cout << char2Ptr << ' ';
33
34 cout << charPtr << endl;
35 } // end main

1 2
3.3 4.4
Anonymous union

extern "C" function prototype // single function
extern "C" // multiple functions
{
 function prototypes
}

Fig. F.9 | Using an anonymous union. (Part 2 of 2.)

double1 = 4.4;

charPtr = "union";

cpphtp10_appF_LegacyCode.fm Page 19 Thursday, August 4, 2016 4:22 PM

F_20 Chapter F C Legacy Code Topics

Summary

Section F.2 Redirecting Input/Output on UNIX/Linux/Mac OS X and Windows
Systems
• On many systems—UNIX, LINUX, Mac OS X or Windows systems in particular—it is possible

to redirect input to a program and output from a program. Input is redirected from the UNIX,
LINUX, Mac OS X or Windows command lines using the redirect input symbol (<) or a pipe
(|). Output is redirected from the UNIX, LINUX, Mac OS X or Windows command lines using
the redirect output symbol (>) or the append output symbol (>>). The redirect output symbol
simply stores the program output in a file, and the append output symbol appends the output to
the end of a file.

Section F.3 Variable-Length Argument Lists
• The macros and definitions of the variable arguments header <cstdarg> provide the capabilities

necessary to build functions with variable-length argument lists.

• An ellipsis (…) in a function prototype indicates that the function receives a variable number of
arguments.

• Type va_list is suitable for holding information needed by macros va_start, va_arg and
va_end. To access the arguments in a variable-length argument list, an object of type va_list
must be declared.

• Macro va_start is invoked before the arguments of a variable-length argument list can be ac-
cessed. The macro initializes the object declared with va_list for use by macros va_arg and
va_end.

• Macro va_arg expands to an expression of the value and type of the next argument in the vari-
able-length argument list. Each invocation of va_arg modifies the va_list object so that the ob-
ject points to the next argument in the list.

• Macro va_end facilitates a normal return from a function whose variable argument list was re-
ferred to by the va_start macro.

Section F.4 Using Command-Line Arguments
• On many systems—UNIX, LINUX, Mac OS X and Windows in particular—it is possible to

pass command-line arguments to main by including in main’s parameter list the parameters int
argc and char *argv[]. Parameter argc is the number of command-line arguments. Parameter
argv is an array of char *’s containing the command-line arguments.

Section F.5 Notes on Compiling Multiple-Source-File Programs
• A function definition must be entirely contained in one file—it cannot span two or more files.

• Global variables must be declared in each file in which they are used.

• Function prototypes can be used to declare functions in other program files. (The extern speci-
fier is not required in a function prototype.) This is accomplished by including the function pro-
totype in each file in which the function is invoked, then linking the compiled files together.

• The storage-class specifier static, when applied to a global namespace scope variable or a func-
tion, prevents it from being used by any function that is not defined in the same file. This is re-
ferred to as internal linkage. Global variables and functions that are not preceded by static in
their definitions have external linkage—they can be accessed in other files if those files contain
proper declarations and/or function prototypes.

cpphtp10_appF_LegacyCode.fm Page 20 Thursday, August 4, 2016 4:22 PM

 Summary F_21

• The static specifier is commonly used with utility functions that are called only by functions in
a particular file. If a function is not required outside a particular file, the principle of least privi-
lege should be enforced by using static.

• When building large programs from multiple source files, compiling the program becomes te-
dious if making small changes to one file means that the entire program must be recompiled.
Many systems provide special utilities that recompile only the modified program file. On UNIX
systems, the utility is called make. Utility make reads a file called Makefile that contains instruc-
tions for compiling and linking the program.

Section F.6 Program Termination with exit and atexit
• Function exit forces a program to terminate as if it had executed normally.

• Function atexit registers a function to be called upon normal termination of the program—i.e.,
either when the program terminates by reaching the end of main, or when exit is invoked.

• Function atexit takes a pointer to a function (e.g., a function name) as an argument. Functions
called at program termination cannot have arguments and cannot return a value.

• Function exit takes one argument—normally the symbolic constant EXIT_SUCCESS or the sym-
bolic constant EXIT_FAILURE. If exit is called with EXIT_SUCCESS, the implementation-defined
value for successful termination is returned to the calling environment. If exit is called with
EXIT_FAILURE, the implementation-defined value for unsuccessful termination is returned.

• When function exit is invoked, any functions registered with atexit are invoked in the reverse
order of their registration, all streams associated with the program are flushed and closed and
control returns to the host environment.

Section F.7 Type Qualifier volatile
• The volatile qualifier is used to prevent optimizations of a variable, because it can be modified

from outside the program’s scope.

Section F.8 Suffixes for Integer and Floating-Point Constants
• C++ provides integer and floating-point suffixes for specifying the types of integer and floating-

point constants. The integer suffixes are u or U for an unsigned integer, l or L for a long integer
and ul or UL for an unsigned long integer. If an integer constant is not suffixed, its type is deter-
mined by the first type capable of storing a value of that size (first int, then long int). The float-
ing-point suffixes are f or F for a float and l or L for a long double. A floating-point constant
that is not suffixed is of type double.

Section F.9 Signal Handling
• The signal-handling library provides the capability to register a function to trap unexpected

events with function signal. Function signal receives two arguments—an integer signal num-
ber and a pointer to the signal-handling function.

• Signals can also be generated with function raise and an integer argument.

Section F.10 Dynamic Memory Allocation with calloc and realloc
• The general-utilities library (cstdlib) provides functions calloc and realloc for dynamic mem-

ory allocation. These functions can be used to create dynamic arrays.

• Function calloc receives two arguments—the number of elements (nmemb) and the size of each
element (size)—and initializes the elements of the array to zero. The function returns a pointer
to the allocated memory or if the memory is not allocated, the function returns a null pointer.

cpphtp10_appF_LegacyCode.fm Page 21 Thursday, August 4, 2016 4:22 PM

F_22 Chapter F C Legacy Code Topics

• Function realloc changes the size of an object allocated by a previous call to malloc, calloc or
realloc. The original object’s contents are not modified, provided that the amount of memory
allocated is larger than the amount allocated previously.

• Function realloc takes two arguments—a pointer to the original object (ptr) and the new size
of the object (size). If ptr is null, realloc works identically to malloc. If size is 0 and the point-
er received is not null, the memory for the object is freed. Otherwise, if ptr is not null and size
is greater than zero, realloc tries to allocate a new block of memory for the object. If the new
space cannot be allocated, the object pointed to by ptr is unchanged. Function realloc returns
either a pointer to the reallocated memory or a null pointer.

Section F.11 Unconditional Branch: goto
• The result of the goto statement is a change in the program’s flow of control. Program execution

continues at the first statement after the label in the goto statement.

• A label is an identifier followed by a colon. A label must appear in the same function as the goto
statement that refers to it.

Section F.12 Unions
• A union is a data type whose members share the same storage space. The members can be almost

any type. The storage reserved for a union is large enough to store its largest member. In most
cases, unions contain two or more data types. Only one member, and thus one data type, can be
referenced at a time.

• A union is declared in the same format as a structure.

• A union can be initialized only with a value of the type of its first member or another object of
the same union type.

Section F.13 Linkage Specifications
• C++ enables you to provide linkage specifications to inform the compiler that a function was

compiled on a C compiler and to prevent the name of the function from being encoded by the
C++ compiler.

• To inform the compiler that one or several functions have been compiled in C, write the function
prototypes as follows:

extern "C" function prototype // single function

extern "C" // multiple functions
{

 function prototypes
}

These declarations inform the compiler that the specified functions are not compiled in C++, so
name encoding should not be performed on the functions listed in the linkage specification.
These functions can then be linked properly with the program.

• C++ environments normally include the standard C libraries and do not require you to use link-
age specifications for those functions.

Self-Review Exercise
F.1 Fill in the blanks in each of the following:

a) Symbol redirects input data from the keyboard to come from a file.
b) The symbol is used to redirect the screen output to be placed in a file.
c) The symbol is used to append the output of a program to the end of a file.

cpphtp10_appF_LegacyCode.fm Page 22 Thursday, August 4, 2016 4:22 PM

 Answers to Self-Review Exercise F_23

d) A(n) is used to direct the output of a program as the input of another pro-
gram.

e) A(n) in the parameter list of a function indicates that the function can receive
a variable number of arguments.

f) Macro must be invoked before the arguments in a variable-length argument
list can be accessed.

g) Macro is used to access the individual arguments of a variable-length argu-
ment list.

h) Macro performs termination housekeeping in a function whose variable argu-
ment list was referred to by macro va_start.

i) Argument of main receives the number of arguments in a command line.
j) Argument of main stores command-line arguments as character strings.
k) The UNIX utility reads a file called that contains instructions for

compiling and linking a program consisting of multiple source files. The utility recom-
piles a file only if the file (or a header it uses) has been modified since it was last com-
piled.

l) Function forces a program to terminate execution.
m) Function registers a function to be called upon normal termination of the pro-

gram.
n) An integer or floating-point can be appended to an integer or floating-point

constant to specify the exact type of the constant.
o) Function can be used to register a function to trap unexpected events.
p) Function generates a signal from within a program.
q) Function dynamically allocates memory for an array and initializes the ele-

ments to zero.
r) Function changes the size of a block of dynamically allocated memory.
s) A(n) is an entity containing a collection of variables that occupy the same

memory, but at different times.
t) The keyword is used to introduce a union definition.

Answers to Self-Review Exercise
F.1 a) redirect input (<). b) redirect output (>). c) append output (>>). d) pipe (|).
e) ellipsis (...). f) va_start. g) va_arg. h) va_end. i) argc. j) argv. k) make, Makefile. l) exit.
m) atexit. n) suffix. o) signal. p) raise. q) calloc. r) realloc. s) union. t) union.

Exercises
F.2 Write a program that calculates the product of a series of integers that are passed to function
product using a variable-length argument list. Test your function with several calls, each with a dif-
ferent number of arguments.

F.3 Write a program that prints the command-line arguments of the program.

F.4 Write a program that sorts an integer array into ascending order or descending order. The
program should use command-line arguments to pass either argument -a for ascending order or -d
for descending order. [Note: This is the standard format for passing options to a program in UNIX.]

F.5 Read the manuals for your system to determine what signals are supported by the signal-
handling library (<csignal>). Write a program with signal handlers for the signals SIGABRT and
SIGINT. The program should test the trapping of these signals by calling function abort to generate
a signal of type SIGABRT and by pressing <Ctrl> C to generate a signal of type SIGINT.

cpphtp10_appF_LegacyCode.fm Page 23 Thursday, August 4, 2016 4:22 PM

F_24 Chapter F C Legacy Code Topics

F.6 Write a program that dynamically allocates an array of integers using a function from
<cstdlib>, not the new operator. The size of the array should be input from the keyboard. The ele-
ments of the array should be assigned values input from the keyboard. Print the values of the array.
Next, reallocate the memory for the array to half of the current number of elements. Print the values
remaining in the array to confirm that they match the first half of the values in the original array.

F.7 Write a program that takes two filenames as command-line arguments, reads the characters
from the first file one at a time and writes the characters in reverse order to the second file.

F.8 Write a program that uses goto statements to simulate a nested looping structure that prints
a square of asterisks. The program should use only the following three output statements:

cout << '*';
cout << ' ';
cout << endl;

F.9 Provide the definition for union Data containing char charcter1, short short1, long
long1, float float1 and double double1.

F.10 Create union Integer with members char c, short s, int i and long l. Write a program
that inputs values of type char, short, int and long and stores the values in union variables of type
union Integer. Each union variable should be printed as a char, a short, an int and a long. Do the
values always print correctly?

F.11 Create union FloatingPoint with members float float1, double double1 and long double
longDouble. Write a program that inputs values of type float, double and long double and stores
the values in union variables of type union FloatingPoint. Each union variable should be printed as
a float, a double and a long double. Do the values always print correctly?

F.12 Given the union

union A
{
 double y;
 char *zPtr;
};

which of the following are correct statements for initializing the union?
a) A p = b; // b is of type A
b) A q = x; // x is a double
c) A r = 3.14159;
d) A s = { 79.63 };
e) A t = { "Hi There!" };
f) A u = { 3.14159, "Pi" };
g) A v = { y = –7.843, zPtr = &x };

cpphtp10_appF_LegacyCode.fm Page 24 Thursday, August 4, 2016 4:22 PM

