Using the Visual Studio
Debugger

Objectives
In this appendix you'll:

m Set breakpoints and run a
program in the debugger.

m Use the Continue command
to continue execution.

m Use the Locals window to
view and modify the values
of variables.

m Use the Watch window to
evaluate expressions.

m Use the Step Into, Step Out
and Step Over commands to
control execution.

m To use the Autos window to
view variables that are used in
the surrounding statements.

tline

0
N

H_2 Chapter H Using the Visual Studio Debugger

H.1 Introduction H.4 Controlling Execution Using the
H.2 Breakpoints and the Continue Step Into, Step Over, Step Out
Command and Continue Commands
H.3 Locals and Watch Windows H.5 Autos Window
H.6 Wrap-Up

H.1 Introduction

In Chapter 2, you learned that there are two types of errors—compilation errors and logic
errors—and you learned how to eliminate compilation errors from your code. Logic errors
(also called bugs) do not prevent a program from compiling successfully, but can cause the
program to produce erroneous results when it runs. Most C++ compiler vendors provide
software called a debugger, which allows you to monitor the execution of your programs
to locate and remove logic errors. The debugger will be one of your most important pro-
gram development tools. This appendix demonstrates key features of the Visual Studio de-
bugger. Appendix I discusses the features and capabilities of the GNU C++ debugger

H.2 Breakpoints and the Continue Command

We begin our study of the debugger by investigating breakpoints, which are markers that
can be set at any executable line of code. When program execution reaches a breakpoint,
execution pauses, allowing you to examine the values of variables to help determine wheth-
er a logic error exists. For example, you can examine the value of a variable that stores the
result of a calculation to determine whether the calculation was performed correctly. Note
that actempting to set a breakpoint at a line of code that is not executable (such as a com-
ment) will actually set the breakpoint at the next executable line of code in that function.

To illustrate the features of the debugger, we use the program listed in Fig. H.3, which
creates and manipulates an object of class Account (Figs. H.1-H.2). Execution begins in
main (lines 8-24 of Fig. H.3). Line 9 creates an Account object with an initial balance of
$50.00. Account’s constructor (lines 8—19 of Fig. H.2) accepts one argument, which spec-
ifies the Account’s initial balance. Line 12 of Fig. H.3 outputs the initial account balance
using Account member function getBalance. Line 14 declares a local variable with-
drawalAmount, which stores a withdrawal amount read from the user. Line 16 prompts the
user for the withdrawal amount, and line 17 inputs the amount into withdrawalAmount.
Line 20 subtracts the withdrawal from the Account’s balance using its withdraw member
function. Finally, line 23 displays the new balance.

class Account {
pubTic:
Account(int);
void deposit(int);
void withdraw(int);
int getBalance();

O~NSONUND WN =

Fig. H.1 | Header file for the Account class. (Part | of 2.)

H.2 Breakpoints and the Continue Command H_3

9 private:
10 int balance{0}; // data member that stores the balance
11 }; // end class Account
Fig. H.1 | Header file for the Account class. (Part 2 of 2.)
1 // Fig. H.2: Account.cpp
2 // Member-function definitions for class Account.
3 #include <iostream>
4 #include "Account.h" // include definition of class Account
5 using namespace std;
6
7 // Account constructor initializes data member balance
8 Account::Account(int initialBalance) {
9 // if initialBalance is greater than 0, set this value as the
10 // balance of the Account; otherwise, balance remains 0
11 if (initialBalance > 0) {
12 balance = initialBalance;
13 }
14
15 // if initialBalance is negative, print error message
16 if (initialBalance < 0) {
17 cout << "Error: Initial balance cannot be negative.\n" << endl;
18 }
19 1}
20
21 // deposit (add) an amount to the account balance
22 void Account::deposit(int amount) {
23 balance = balance + amount; // add amount to balance
24 1}
25
26 // withdraw (subtract) an amount from the account balance
27 void Account::withdraw(int amount) {
28 if (amount <= balance) { // withdrawal amount 0K
29 balance = balance - amount;
30 }
31 else { // withdraw amount exceeds balance
32 cout << "Withdrawal amount exceeded balance.\n" << endTl;
33 }
34 3}
35
36 // return the account balance
37 int Account::getBalance() {
38 return balance; // gives the value of balance to the calling function
39 1}
Fig. H.2 | Definition for the Account class.

1
2
3

// Fig. H.3: figH_03.cpp
// Create and manipulate Account objects.
#include <iostream>

Fig.

H.3 | Testclass for debugging. (Part | of 2.)

H 4 Chapter H Using the Visual Studio Debugger

#include
using namespace std;

int mainQ) {
Account account1{50};

cout << << accountl.getBalance() << endl;

int withdrawalAmount;

cout << H
cin >> withdrawalAmount;
cout << << withdrawalAmount
<< H
accountl.withdraw(withdrawalAmount) ;
21
22
23 cout << << accountl.getBalance() << endl;
24 }

Fig. H.3 | Test class for debugging. (Part 2 of 2.)

Creating a Project in Visual Studio
In the following steps, you’ll create a project that includes the code from Figs. H.1-H.3.

1. Select File > New > Project... to display the New Project dialog.

2. In the Installed Templates list under Visual C++, select Win32, and in the center of
the dialog, select Win32 Console Application.

3. In the Name: field, enter a name for your project and in the Location: field, specify
where you’d like to save the project on your computer, then click OK.

4. In the Win32 Application Wizard dialog, click Next >.

5. Under Application type:, select Console application, and under Additional options:
uncheck Precompiled header and Security Development Lifecycle (SDL) checks,
select Empty project then click Finish.

6. In the Solution Explorer, right click your project’s Source Files folder and select
Add > Existing Item... to display the Add Existing Item dialog.

7. Locate the folder containing the Appendix H example code, select all three files
and click Add.

Enabling Debug Mode, Inserting Breakpoints and Running in Debug Mode
In the following steps, you’ll use breakpoints and various debugger commands to examine
the value of the variable withdrawalAmount declared in Fig. H.3.

1. Enabling the debugger. The debugger is normally enabled by default. If it isn’,
you can change the settings of the Solution Configurations combo box (Fig. H.4)
in the toolbar. To do this, click the combo box’s down arrow, then select Debug.

H.2 Breakpoints and the Continue Command HS5

M ConsoleAppl
File Edit

[l ConsoleAp
1

2
3
4
5

-4

Error List Out

Col1

View

[-2

Solution Configurations

YH & | Quicklaunch (Ctr+Q) combo box

ication] - Microsoft Visual Studio

Build Debug Team Tools indow Help

- | Deb

Project
= P Local Windows Debugger ~

Solution Explorer
@ e~

Search Solution Explorer (Ctrl+;)

5

- & F@| o S ™
o~
fa] Selution 'ConsoleApplication’ {1 prc =
4 [%] ConsoleApplication1

plicatior ~ (Global Scope)
—[./;’ Fig. H.3: figH @3.cpp
// Create and manipulate Account objeci%
C#include <iostream>
#include “"Account.h”
using namespace std;

-
»

Team Ex.. ClassVi.. MNotifica...

put
4 Publish «

Fig. H.4 |

2.

Enabling the debugger.

Inserting breakpoints. Open figH_03.cpp by double-clicking it in the Solution
Explorer. To insert a breakpoint, click inside the margin indicator bar (the gray
margin at the left of the code window in Fig. H.5) next to the line of code at
which you wish to break or right click that line of code and select Breakpoint >
Insert Breakpoint. You can set as many breakpoints as necessary. Set breakpoints
at lines 16 and 20 of your code. A red circle appears in the margin indicator bar
where you clicked, indicating that a breakpoint has been set (Fig. H.5). When the
program runs, the debugger pauses execution at any line that contains a break-
point. The program is said to be in break mode when the debugger pauses the
program. Breakpoints can be set before running a program, in break mode and
while a program is running.

Breakpoint
Margin

indicator bar

Breakpoint

Al - B

D¢ ConsoleApplication? - Microsoft Visual Studio YH & QuickLaunch (Ctrl-Q)

Eile Edit View Build Debug

Pe-o | B W
figH D3.cpp # X [[NaaNan
& ConsoleApplication] (Global Scape) - @ main(
cout << "\nEnter withdrawal amount for accountil:

cin »> withdrawalAmount; // obtain user input

cout << "\nattempting to subtract " << withdrawalAmount
<¢ " from accountl balance\n\n";

accountl.withdraw(withdrawalAmount); // try to subtract from accc
»

P

=}

Jools Test Anpalyze Window Help Paul Deitel ~

~ x5

Project Team

- ~ P Local Windows Debugger ~ | -

Debug

Account.h

"; [/ prompt

-

ojdig weay se10jdxg uonn|og

ErrorList Output

Col 1 A Publish =

Fig. H.5 |

3.

Setting two breakpoints.

Starting to debug. After setting breakpoints in the code editor, select Debug >
Start Debugging to build the program and begin the debugging process. When
you debug a console application, a Command Prompt window appears (Fig. H.6)
in which you can specify program input and view program output. The debugger
enters break mode when execution reaches the breakpoint at line 16.

H_ 6

Chapter H Using the Visual Studio Debugger

B \\wwmware-host\Shared Folders\pauldeitel\Dropbox\books\20150CPPHTP10\ConsoleApplic.. — m} x

accountl balance: %50

Fig. H.6 | Inventory program running.

4. Examining program execution. Upon entering break mode at the first breakpoint
(line 16), the IDE becomes the active window (Fig. H.7). The yellow arrow to
the left of line 16 indicates that this line contains the next statement to execute.
M ConsoleApplication {Debugging) - Microsoft Visual... Y & | Quick Launch (Ctrl+0) A - B x
File Edit View Project Build Debug Team Tools Test Analyze Window Help Paul Deitel ~
R | = HHH| - -‘)Contlnuev‘p =;; z
Process: [11320] ConsoleApplicationl.exe - Lifecycle Events = Thread: | [10612] Main Thread
figH_03.cpp = X XS] Account.h i
Yellow arrow [ConsoleApplicati - (Global Scope) ~ @ main() -
that indicates @ 16 [cout << "\nEnter withdrawal amd$ B Memary Usage CPU Usage
the next 17 cin »» withdrawaldmount; // obt= Search Events P~
18 cout << "\nattempting to subtr - .
statement 19 << " from accountl halance\:r EEVE:t " ET: Du;a;;n ;r;;:d
to execute ® accountl.withdraw(withdrawalimo + = Breakpoint Hit 0,125 ms | !
0% - 4 »
Name Value Type MName
b @ accountl {balance=50} Account @ ConsoleApplication].exe!main(Line 16 Ce+
@ withdrawalAmour -858993460 int [External Code]

[Frames below may be incorrect and/or missing, no s

Autos QI Watch 1 [RSCW Breakp.. Excepti. Comm.. Immedi.. Output

1 Publish

Fig. H.7 | Program execution suspended at the first breakpoint.

5.

N

Using the Continue command to resume execution. To resume execution, select
Debug > Continue. The Continue command resumes program execution undil the
next breakpoint or the end of main is encountered, whichever comes first. The
program continues executing and pauses for input at line 17. Enter 13 as the
withdrawal amount. The program executes until it stops at the next breakpoint
(line 20). Notice that when you place your mouse pointer over the variable name
withdrawalAmount, the value stored in the variable is displayed in a Quick Info
box (Fig. H.8). As you’ll see, this can help you spot logic errors in your programs.

Setting a breakpoint at main’s closing brace. Set a breakpoint at line 24 in the
source code by clicking in the margin indicator bar to the left of line 24. This will
prevent the program from closing immediately after displaying its result. When
there are no more breakpoints at which to suspend execution, the program will
execute to completion and the Command Prompt window will close. If you do not
set this breakpoint, you won’t be able to view the program’s output before the
console window closes.

Continuing program execution. Use the Debug > Continue command to execute
the code up to the next breakpoint. The program displays the result of its calcu-
lation (Fig. H.9).

H.3 Locals and Watch Windows H 7

4] ConsoleApplicationt (Debugging) - Microsoft Visual Stu... ¥ Bl &7 | Quick Launch (Ctrl-Q) Al o B x
File Edit View Project Build Debug Team Tools Test Analyze Window Help

‘o-o|H- DM D-Q- b Continue - | 51 _%

Process: [11320] ConsoleApplicationl.exe ~ Lifecycle Events ~ Thread: [10612] Main Thread

[EEREE I /. count.cpp Accounth -

] ConsoleApplication - (Global Scope) ~ @ main() -
[] 16 cout << "\nEnter withdrawal amount for|&

17 cin »>»> withdrawalAmount; // obtain usei« Search Events

18 cout << "\nattemptipe to btra " E

- vent

19 << " from accoun|® withdrawalAmount

20 accountl.withdraw(withdrawslamount); /. Feakpe .
8 [g Z Wi, - Quick Info
10% ~|4 3

. box

Name Value Type Name
b @ accountl {balance=50} Account © ConsoleApplicationT.exelmain() Line 20
@ withdrawalAmoun 13 int [External Code]
[Frames below may be incorrect and/or missing, no syt

Autos JRILY Watch 1 [ECRSCWNN Breakpo.. Excepti.. Comma.. Immedi.. Output

4 Publish a

Fig. H.8 | Quick Info box showing the value of a variable.

B \\wwmware-host\Shared Folders\pauldeitel\Dropbox\books\20150CPPHTP10\ConsoleApplic.. — m} x

Enter withdrawal amount for accounti:

attempting to subtract 13 from accountl ba

accountl balance: $37

Fig. H.9 | Program output.

8. Removing a breakpoint. Click the breakpoint in the margin indicator bar.

9. Finishing program execution. Select Debug > Continue to execute the program to
completion.

In this section, you learned how to enable the debugger and set breakpoints so that
you can examine the results of code while a program is running. You also learned how to
continue execution after a program suspends execution at a breakpoint and how to remove
breakpoints.

H.3 Locals and Watch Windows

In the preceding section, you learned that the Quick Info feature allows you to examine a
variable’s value. In this section, you'll learn to use the Locals window to assign new values
to variables while your program is running. You’ll also use the Watch window to examine
the value of more complex expressions.

1. Inserting breakpoints. Clear the existing breakpoints. Then, set a breakpoint at
line 20 in the source code by clicking in the margin indicator bar to the left of
line 20 (Fig. H.10). Set another breakpoint at line 23 by clicking in the margin
indicator bar to the left of line 23.

H_8 Chapter H Using the Visual Studio Debugger

M ConsoleApplication] - Microsoft Visual Studio YHB & QuickLaunch (Ctil+Q) Pl - B x
File Edit View Project Build Debug Team Tools Test Analyze Window Help Paul Deitel ~
fe-o|@-2 M| -0 o] Debug - s - B Local Windows Debugger « | 2 % 2

" R I A ccount.cpp Accounth
@Cunsuleﬁ\pph:atlun'l - (Global Scope) ~ @ main()
28 | accountl.withdraw(withdrawalAmount); // try to subtract from accouig

// display balances
cout << "accountl balance: $" << accountl.getBalance() << endl;

o
8
*

ErrorList Output

Ln20 Col1 i 4 Publish =

Fig. H.10 | Setting breakpoints at lines 20 and 23.

2. Starting debugging. Select Debug > Start. Type 13 at the Enter withdrawal amount
for account1: prompt and press Enter so that your program reads the value you
just entered. The program executes until the breakpoint at line 20.

3. Suspending program execution. The debugger enters break mode at line 20
(Fig. H.11). At this point, line 17 has input the withdrawalAmount that you en-
tered (13), lines 18-19 have output that the program will attempt to withdraw
money and line 20 is the next statement that will execute.

w ConsoleApplication] (Debugging) - Microsoft Visual Stu... YH & | Quick Launch (Ctrl+Q) P - A x
file Edit View Project Build Debug Team Tools Test Analyze Window Help Paul Deitel -
El - ‘ "'Hf‘ = " }Contlnuev‘pz.g

i Process: [9508] ConscleApplicationl.exe = Lifecycle Events ~ Thread: | [9248] Main Thread

NSRS Account.cpp Account.h
[%] ConsoleApplication] ~| (Global Scope) ~| @ main) -
o 20 | accountl.withdraw(withdrawalAmount); /|% B Memory Usoge CPU Usage
21 - Search Events P~
22 /{ display balances
® 23 cout << “accountl balance: 3" << accow
24 } -
3

Diagnostic Tools * 0 x

Event Time Duration Thrg
> BreakpointHit 3.82c 3.830ms [9249

Call Stack

Type Name
b @ accountl {balance=50} Account @ ConsoleApplication!.exelmain() Line 20
@ withdrawalAmoun 13 int [External Code]

[Frames below may be incorrect and/or missing, no syr

Autos [JEIEIEY Watch 1 Breakpo.. Excepti.. Comma.. Immedi.. Output

4 Publish

Fig. H.11 | Program execution suspended when debugger reaches the breakpoint at line 21.

4. Examining data. In break mode, you can explore the values of your local variables
using the debugger’s Locals window, which is normally displayed at the bottom
left of the IDE when you are debugging. If it is not shown, you can view the
Locals window, select Debug > Windows > Locals. Figure H.12 shows the values
for main’s local variables accountl and withdrawalAmount (13).

H.3 Locals and Watch Windows H_ 9

Locals v 1x
MName Value Type

[@ accountl {balance=50} Account
@ withdrawalAmoun 13 int

Autos JEI=IEN Watch 1

Fig. H.12 | Examining variable withdrawalAmount.

5. Evaluating arithmetic and boolean expressions. You can evaluate arithmetic and
Boolean expressions using the Watch window. You can display up to four Watch
windows. Select Debug > Windows > Watch > Watch 1 or, if it’s already displayed,
click the Watch 1 tab at the bottom of the IDE window. In the first row of the
Name column, type (withdrawalAmount + 3) * 5, then press Enser. The value of
this expression (80 in this case) is displayed in the Value column (Fig. H.13). In
the next row of the Name column, type withdrawalAmount == 3, then press Enter.
This expression determines whether the value of withdrawalAmount is 3. Expres-
sions containing the == operator (or any other relational or equality operator) are
treated as bool expressions. The value of the expression in this case is false
(Fig. H.13), because withdrawalAmount currently contains 13, not 3.

Evaluating an arithmetic expression Evaluating a boo1 expression
Watch 1 > 0 x
MName Vakie Type
@ (withdrawal&mount + 3) * 3730 int
@ withdrawalAmount == false bool

Fig. H.13 | Examining the values of expressions.

6. Resuming execution. Select Debug > Continue to resume execution. Line 20 sub-
tracts the withdrawal amount from the account, and the debugger reenters break
mode at line 23. Select Debug > Windows > Locals or click the Locals tab at the
bottom of Visual Studio to redisplay the Locals window. The updated balance
in accountl is now displayed in red (Fig. H.14) to indicate that it has been mod-
ified since the last breakpoint. Click the plus box to the left of accountl in the
Name column of the Locals window. This allows you to view each of accountl’s
data member values individually—this is particularly useful for objects that have
several data members.

H_I0 Chapter H Using the Visual Studio Debugger

Locals * 0 x
Ea::e i \':llue - Type Value of accountl’s balance
37— frcount———— .)
o {balance=37} data member displayed in red
B withdrawslAmour 13— lint |

Locals

Fig. H.14 | Displaying the value of local variables.

7. Modifying values. Based on the value input by the user (13), the account balance
output by the program should be $37. However, you can use the Locals window
to change the values of variables during the program’s execution. This can be
valuable for experimenting with different values and for locating logic errors. In
the Locals window, expand the accountl node and double click the Value field
in the balance row to select the value 37. Type 33, then press Enter. The debug-
ger changes the value of balance and displays its new value in red (Fig. H.15).

Locals v 1Xx
MName Value Type
4 @ accountl {balance=33} Account
& balance 330 int
© withdrawslmoun 13— it
Locals

Value modified in the Locals window

Fig. H.15 | Modifying the value of a variable.

8. Setting a breakpoint at at main’s closing brace. Set a breakpoint at line 24 in the
source code to prevent the program from closing immediately after displaying its
result. If you do not set this breakpoint, you won’t be able to view the program’s
output before the console window closes.

9. Viewing the program result. Select Debug > Continue to continue program execu-
tion. Function main executes until the return statement in line 29 and displays
the result. Notice that the result is $33 (Fig. H.16). This shows that Step 7
changed the value of balance from the calculated value (37) to 33.

B \wmware-host\Shared Folders\pauldeitel\ Dropbex\books\2013\CPPHTP 10\ ConselcApplica.. — ul X
account1 balance: $50

Enter withdrawal amount for accountl: 13

attempting to subtract 13 from accountl balance

laccountl balance: $37

Fig. H.16 | Output displayed after modifying the account1 variable.

10. Stopping the debugging session. Select Debug > Stop Debugging. This will close
the Command Prompt window. Remove all remaining breakpoints.

H.4 Using the Step Into, Step Over, Step Out and Continue

In this section, you learned how to use the debugger’s Watch and Locals windows to
evaluate arithmetic and Boolean expressions. You also learned how to modify the value of
a variable during your program’s execution.

H.4 Controlling Execution Using the Step Into, Step
Over, Step Out and Continue Commands

Sometimes executing a program line by line can help you verify that a function’s code ex-
ecutes correctly, and can help you find and fix logic errors. The commands you learn in
this section allow you to execute a function line by line, execute all the statements of a
function at once or execute only the remaining statements of a function (if you've already
executed some statements within the function).

1.

Setting breakpoints. Set breakpoints at lines 20 and 24 by clicking in the margin
indicator bar to the left of the line.

Starting the debugger. Select Debug > Start. Enter the value 13 at the Enter with-
drawal amount for account1: prompt. Execution will halt when the program
reaches the breakpoint at line 20.

Using the Step Into command. The Step Into command executes the next state-
ment in the program (line 20), then immediately halts. If that statement is a func-
tion call (as is the case here), control transfers into the called function. This
enables you to execute each statement inside the function individually to confirm
the function’s execution. Select Debug > Step Into (or press FI1I) to enter the
withdraw function. Then, Select Debug > Step Into again so the yellow arrow is
positioned at line 27 of Account. cpp.

Using the Step Over command. Select Debug > Step Over to execute the current
statement (line 27) and transfer control to line 27. The Step Over command be-
haves like the Step Into command when the next statement to execute does not
contain a function call. You'll see how the Step Over command differs from the
Step Into command in Szep 9.

Using the Step Out command. Select Debug > Step Out to execute the remaining
statements in the function and return control to the next executable statement
(line 23 in Fig. H.3). Often, in lengthy functions, you’ll want to look at a few key
lines of code, then continue debugging the caller’s code. The Step Out command
enables you to continue program execution in the caller without having to step
through the entire called function line by line.

Using the Continue command. Select Debug > Continue to execute until the next
breakpoint is reached at line 24. Using the Continue command is useful when you
wish to execute all the code up to the next breakpoint.

Stopping the debugger. Select Debug > Stop Debugging to end the debugging ses-
sion. This will close the Command Prompt window.

Starting the debugger. Before we can demonstrate the next debugger feature, you
must start the debugger again. Start it, as you did in Step 2, and enter 13 in re-
sponse to the prompt. The debugger enters break mode at line 20.

H_I12

9.

10.

Chapter H Using the Visual Studio Debugger

Using the Step Over command. Select Debug > Step Over. This command behaves
like the Step Into command when the next statement to execute does not contain
a function call. If the next statement to execute contains a function call, the called
function executes in its entirety (without pausing execution at any statement in-
side the function), and the yellow arrow advances to the next executable line (af-
ter the function call) in the current function. In this case, the debugger executes
line 20, located in main (Fig. H.3). Line 20 calls the withdraw function. The de-
bugger then pauses execution at line 23, the next executable line in the current
function, main.

Stopping the debugger. Select Debug > Stop Debugging. This will close the Com-
mand Prompt window. Remove all remaining breakpoints.

In this section, you learned how to use the debugger’s Step Into command to debug
functions called during your program’s execution. You saw how the Step Over command
can be used to step over a function call. You used the Step Out command to continue exe-
cution until the end of the current function. You also learned that the Continue command
continues execution until another breakpoint is found or the program exits.

H.5 Autos Window

The Autos window displays the variables used in the previous statement executed (includ-
ing the return value of a function, if there is one) and the variables in the next statement
to execute.

1.

2.

Setting breakpoints. Clear your prior breakpoints, then set breakpoints at lines 9
and 17 in main.

Using the Autos window. Start the debugger by selecting Debug > Start. When the
debugger enters break mode at line 9, open the Autos window by selecting
Debug > Windows > Autos (Fig. H.17). Since we are just beginning the program’s
execution, the Autos window lists only the variable(s) in the next statement that
will execute—in this case, the accountl object, its value and its type. Viewing the
values stored in an object lets you verify that your program is manipulating these
variables correctly. Notice that accountl contains a large negative value. This val-
ue, which may be different each time the program executes, is accountl’s unini-
tialized value. This unpredictable (and often undesirable) value demonstrates
why it is important to initialize all C++ variables before they are used.

Autos > 0 x
MName Value Type
PRC account | (balance—256993460 | Accoun]
& balance -838993460 int

Autos

Fig. H.17 | Autos window displaying the state of account1 object.

3.

Using the Step Over command. Select Debug > Step Over to execute line 10. The
Autos window updates the value of accountl’s balance data member (Fig. H.18)
after it is initialized.

H.6 Wrap-Up H_I3

MName Value Type

% @ accountl {balance=50} Account
& balance 50 int

LU | ocals Watch 1

Fig. H.18 | Autos window displaying the state of account1 object after initialization.

4. Continuing execution. Select Debug > Continue to execute the program until the
second breakpoint at line 17. The Autos window displays uninitialized local vari-
able withdrawalAmount (Fig. H.19), which has a large negative value.

Autos 1 x
MName Value Type

2 withdrawalAmount | -858993460 lint |

Autos

Fig. H.19 | Autos window displaying local variable wi thdrawalAmount.

5. Entering data. Select Debug > Step Over to execute line 17. At the program’s in-
put prompt, enter a value for the withdrawal amount. The Autos window updates
the value of local variable withdrawalAmount with the value you entered
(Fig. H.20).

MName Value

€ @ withdrawal&mount 13

LU | ocals Watch 1

Fig. H.20 | Autos window displaying updated local variable withdrawalAmount.

6. Stopping the debugger. Select Debug > Stop Debugging to end the debugging ses-
sion. Remove all remaining breakpoints.

H.6 Wrap-Up

In this appendix, you learned how to insert, disable and remove breakpoints in the Visual
Studio debugger. Breakpoints allow you to pause program execution so you can examine
variable values. This capability will help you locate and fix logic errors in your programs.
You saw how to use the Locals and Watch windows to examine the value of an expression
and how to change the value of a variable. You also learned debugger commands Step Into,
Step Over, Step Out and Continue that can be used to determine whether a function is ex-
ecuting correctly. Finally, you learned how to use the Autos window to examine variables
used specifically in the previous and next commands.

H_I14 Chapter H Using the Visual Studio Debugger

