
IUsing the GNU C++
Debugger

O b j e c t i v e s
In this appendix you’ll:

■ Use the run command to
run a program in the
debugger.

■ Use the break command to
set a breakpoint.

■ Use the continue
command to continue
execution.

■ Use the print command to
evaluate expressions.

■ Use the set command to
change variable values during
program execution.

■ Use the step, finish and
next commands to control
execution.

■ Use the watch command to
see how a data member is
modified during program
execution.

■ Use the delete command
to remove a breakpoint or a
watchpoint.

cpphtp10_appI.fm Page 1 Tuesday, February 28, 2017 2:00 PM

I_2 Appendix I Using the GNU C++ Debugger

I.1 Introduction
In Chapter 2, you learned that there are two types of errors—compilation errors and logic
errors—and you learned how to eliminate compilation errors from your code. Logic errors
do not prevent a program from compiling successfully, but they can cause the program to
produce erroneous results when it runs. GNU includes software called a debugger that al-
lows you to monitor the execution of your programs so you can locate and remove logic
errors. For this appendix, we used GNU C++ on Ubuntu Linux.

The debugger is one of the most important program development tools. Many IDEs
provide their own debuggers similar to the one included in GNU or provide a graphical
user interface to GNU’s debugger. This appendix demonstrates key features of GNU’s
debugger. Appendix H discusses the features and capabilities of the Visual Studio
debugger. Appendix J discusses the features and capabilities of the Xcode debugger. Our
C++ Resource Center (www.deitel.com/cplusplus/) provides links to tutorials that can
help students and instructors familiarize themselves with the debuggers provided with var-
ious other development tools.

I.2 Breakpoints and the run, stop, continue and
print Commands
We begin our study of the debugger by investigating breakpoints, which are markers that
can be set at any executable line of code. When program execution reaches a breakpoint,
execution pauses, allowing you to examine the values of variables to help determine wheth-
er a logic error exists. For example, you can examine the value of a variable that stores the
result of a calculation to determine whether the calculation was performed correctly. Note
that attempting to set a breakpoint at a line of code that is not executable (such as a com-
ment) will actually set the breakpoint at the next executable line of code in that function.

To illustrate the features of the debugger, we use class Account (Figs. I.1–I.2) and the
program listed in Fig. I.3, which creates and manipulates an object of class Account. Exe-
cution begins in main (lines 8–24 of Fig. I.3). Line 9 creates an Account object with an
initial balance of $50.00. Account’s constructor (lines 8–19 of Fig. I.2) accepts one argu-
ment, which specifies the Account’s initial balance. Line 12 of Fig. I.3 outputs the initial
account balance using Account member function getBalance. Line 14 declares a local
variable withdrawalAmount which stores a withdrawal amount input by the user. Line 16
prompts the user for the withdrawal amount; line 17 inputs the withdrawalAmount. Line
20 uses the Account’s withdraw member function to subtract the withdrawalAmount from
the Account’s balance. Finally, line 23 displays the new balance.

I.1 Introduction
I.2 Breakpoints and the run, stop,

continue and print Commands
I.3 print and set Commands

I.4 Controlling Execution Using the
step, finish and next
Commands

I.5 watch Command
I.6 Wrap-Up

cpphtp10_appI.fm Page 2 Tuesday, February 28, 2017 2:00 PM

I.2 run, stop, continue and print Commands I_3

1 // Fig. I.1: Account.h
2 // Definition of Account class.
3 class Account {
4 public:
5 Account(int); // constructor initializes balance
6 void deposit(int); // add an amount to the account balance
7 void withdraw(int); // subtract an amount from the account balance
8 int getBalance(); // return the account balance
9 private:

10 int balance{0}; // data member that stores the balance
11 }; // end class Account

Fig. I.1 | Header file for the Account class.

1 // Fig. I.2: Account.cpp
2 // Member-function definitions for class Account.
3 #include <iostream>
4 #include "Account.h" // include definition of class Account
5 using namespace std;
6
7 // Account constructor initializes data member balance
8 Account::Account(int initialBalance) {
9 // if initialBalance is greater than 0, set this value as the

10 // balance of the Account; otherwise, balance remains 0
11 if (initialBalance > 0) {
12 balance = initialBalance;
13 }
14
15 // if initialBalance is negative, print error message
16 if (initialBalance < 0) {
17 cout << "Error: Initial balance cannot be negative.\n" << endl;
18 }
19 }
20
21 // deposit (add) an amount to the account balance
22 void Account::deposit(int amount) {
23 balance = balance + amount; // add amount to balance
24 }
25
26 // withdraw (subtract) an amount from the account balance
27 void Account::withdraw(int amount) {
28 if (amount <= balance) { // withdrawal amount OK
29 balance = balance - amount;
30 }
31 else { // withdraw amount exceeds balance
32 cout << "Withdrawal amount exceeded balance.\n" << endl;
33 }
34 }
35

Fig. I.2 | Definition for the Account class. (Part 1 of 2.)

cpphtp10_appI.fm Page 3 Tuesday, February 28, 2017 2:00 PM

I_4 Appendix I Using the GNU C++ Debugger

In the following steps, you’ll use breakpoints and various debugger commands to
examine the value of the variable withdrawalAmount declared in line 14 of Fig. I.3.

1. Compiling the program for debugging. To use the debugger, you must compile
your program with the -g option, which generates additional information that
the debugger needs to help you debug your programs. To do so, type

2. Starting the debugger. Type gdb figI_03 (Fig. I.4). The gdb command starts the
debugger and displays the (gdb) prompt at which you can enter commands.

3. Running a program in the debugger. Run the program through the debugger by
typing run (Fig. I.5). If you do not set any breakpoints before running your pro-
gram in the debugger, the program will run to completion.

4. Inserting breakpoints using the GNU debugger. Set a breakpoint at line 12 of fi-
gI_03.cpp by typing break 12. The break command inserts a breakpoint at the
line number specified as its argument (i.e., 12). You can set as many breakpoints as

36 // return the account balance
37 int Account::getBalance() {
38 return balance; // gives the value of balance to the calling function
39 }

1 // Fig. I.3: figI_03.cpp
2 // Create and manipulate Account objects.
3 #include <iostream>
4 #include "Account.h"
5 using namespace std;
6
7 // function main begins program execution
8 int main() {
9 Account account1{50}; // create Account object

10
11 // display initial balance of each object
12 cout << "account1 balance: $" << account1.getBalance() << endl;
13
14 int withdrawalAmount; // stores withdrawal amount read from user
15
16 cout << "\nEnter withdrawal amount for account1: "; // prompt
17 cin >> withdrawalAmount; // obtain user input
18 cout << "\nattempting to subtract " << withdrawalAmount
19 << " from account1 balance\n\n";
20 account1.withdraw(withdrawalAmount); // try to subtract from account1
21
22 // display balances
23 cout << "account1 balance: $" << account1.getBalance() << endl;
24 }

Fig. I.3 | Test class for debugging.

 g++ -std=c++14 -g -o figI_03 figI_03.cpp Account.cpp

Fig. I.2 | Definition for the Account class. (Part 2 of 2.)

cpphtp10_appI.fm Page 4 Tuesday, February 28, 2017 2:00 PM

I.2 run, stop, continue and print Commands I_5

necessary. Each breakpoint is identified by the order in which it was created. The
first breakpoint is known as Breakpoint 1. Set another breakpoint at line 20 by typ-
ing break 20 (Fig. I.6). This new breakpoint is known as Breakpoint 2. When the
program runs, it suspends execution at any line that contains a breakpoint and the
debugger enters break mode. Breakpoints can be set even after the debugging pro-
cess has begun. [Note: If you do not have a numbered listing for your code, you can
use the list command to output your code with line numbers. For more informa-
tion about the list command type help list from the gdb prompt.]

pauldeitel@ubuntu:~/Documents/examples/appI$ gdb figI_03
GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.04) 7.11.1
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from figI_03...done.
(gdb)

Fig. I.4 | Starting the debugger to run the program.

(gdb) run
Starting program: /home/pauldeitel/Documents/examples/appI/figI_03
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

account1 balance: $37
[Inferior 1 (process 53432) exited normally]
(gdb)

Fig. I.5 | Running the program with no breakpoints set.

(gdb) break 12
Breakpoint 1 at 0x4009cf: file figI_03.cpp, line 12.
(gdb) break 20
Breakpoint 2 at 0x400a4c: file figI_03.cpp, line 20.
(gdb)

Fig. I.6 | Setting two breakpoints in the program.

cpphtp10_appI.fm Page 5 Tuesday, February 28, 2017 2:00 PM

I_6 Appendix I Using the GNU C++ Debugger

5. Running the program and beginning the debugging process. Type run to execute
your program and begin the debugging process (Fig. I.7). The debugger enters
break mode when execution reaches the breakpoint at line 12. At this point, the
debugger notifies you that a breakpoint has been reached and displays the source
code at that line (12), which will be the next statement to execute.

6. Using the continue command to resume execution. Type continue. The contin-
ue command causes the program to continue running until the next breakpoint
is reached (line 20). Enter 13 at the prompt. The debugger notifies you when ex-
ecution reaches the second breakpoint (Fig. I.8). Note that figI_03’s normal
output appears between messages from the debugger.

7. Examining a variable’s value. Type print withdrawalAmount to display the cur-
rent value stored in the withdrawalAmount variable (Fig. I.9). The print com-
mand allows you to peek inside the computer at the value of one of your variables.
This can be used to help you find and eliminate logic errors in your code. In this
case, the variable’s value is 13—the value you entered that was assigned to variable
withdrawalAmount in line 18 of Fig. I.3. Next, use print to display the contents
of the account1 object. When an object is displayed with print, braces are placed
around the object’s data members. In this case, there is a single data member—
balance—which has a value of 50.

(gdb) run
Starting program: /home/pauldeitel/Documents/examples/appI/figI_03

Breakpoint 1, main () at figI_03.cpp:12
12 cout << "account1 balance: $" << account1.getBalance() << endl;
(gdb)

Fig. I.7 | Running the program until it reaches the first breakpoint.

(gdb) continue
Continuing.
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

Breakpoint 2, main () at figI_03.cpp:20
20 account1.withdraw(withdrawalAmount); // try to subtract from ac-
count1
(gdb)

Fig. I.8 | Continuing execution until the second breakpoint is reached.

cpphtp10_appI.fm Page 6 Tuesday, February 28, 2017 2:00 PM

I.2 run, stop, continue and print Commands I_7

8. Using convenience variables. When you use print, the result is stored in a con-
venience variable such as $1. Convenience variables are temporary variables cre-
ated by the debugger that are named using a dollar sign followed by an integer.
Convenience variables can be used to perform arithmetic and evaluate Boolean
expressions. Type print $1. The debugger displays the value of $1 (Fig. I.10),
which contains the value of withdrawalAmount. Note that printing the value of
$1 creates a new convenience variable—$3.

9. Continuing program execution. Type continue to continue the program’s execu-
tion. The debugger encounters no additional breakpoints, so it continues execut-
ing and eventually terminates (Fig. I.11).

10. Removing a breakpoint. You can display a list of all of the breakpoints in the pro-
gram by typing info break. To remove a breakpoint, type delete, followed by a
space and the number of the breakpoint to remove. Remove the first breakpoint
by typing delete 1. Remove the second breakpoint as well. Now type info break
to list the remaining breakpoints in the program. The debugger should indicate
that no breakpoints are set (Fig. I.12).

11. Executing the program without breakpoints. Type run to execute the program.
Enter the value 13 at the prompt. Because you successfully removed the two
breakpoints, the program’s output is displayed without the debugger entering
break mode (Fig. I.13).

(gdb) print withdrawalAmount
$1 = 13
(gdb) print account1
$2 = {balance = 50}
(gdb)

Fig. I.9 | Printing the values of variables.

(gdb) print $1
$3 = 13
(gdb)

Fig. I.10 | Printing a convenience variable.

(gdb) continue
Continuing.
account1 balance: $37
[Inferior 1 (process 53437) exited normally]
(gdb)

Fig. I.11 | Finishing execution of the program.

cpphtp10_appI.fm Page 7 Tuesday, February 28, 2017 2:00 PM

I_8 Appendix I Using the GNU C++ Debugger

12. Using the quit command. Use the quit command to end the debugging session
(Fig. I.14). This command causes the debugger to terminate.

In this section, you used the gdb command to start the debugger and the run com-
mand to start debugging a program. You set a breakpoint at a particular line number in
the main function. The break command can also be used to set a breakpoint at a line
number in another file or at a particular function. Typing break, then the filename, a
colon and the line number will set a breakpoint at a line in another file. Typing break,
then a function name will cause the debugger to enter the break mode whenever that func-
tion is called.

Also in this section, you saw how the help list command will provide more infor-
mation on the list command. If you have any questions about the debugger or any of its
commands, type help or help followed by the command name for more information.

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000000004009cf in main() at fi-
gI_03.cpp:12

breakpoint already hit 1 time
2 breakpoint keep y 0x0000000000400a4c in main() at fi-
gI_03.cpp:20

breakpoint already hit 1 time
(gdb) delete 1
(gdb) delete 2
(gdb) info break
No breakpoints or watchpoints.
(gdb)

Fig. I.12 | Viewing and removing breakpoints.

(gdb) run
Starting program: /home/pauldeitel/Documents/examples/appI/figI_03
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

account1 balance: $37
[Inferior 1 (process 53712) exited normally]
(gdb)

Fig. I.13 | Program executing with no breakpoints set.

(gdb) quit
pauldeitel@ubuntu:~/Documents/examples/appI$

Fig. I.14 | Exiting the debugger using the quit command.

cpphtp10_appI.fm Page 8 Tuesday, February 28, 2017 2:00 PM

I.3 print and set Commands I_9

Finally, you examined variables with the print command and remove breakpoints
with the delete command. You learned how to use the continue command to continue
execution after a breakpoint is reached and the quit command to end the debugger.

I.3 print and set Commands
In the preceding section, you learned how to use the debugger’s print command to exam-
ine the value of a variable during program execution. In this section, you’ll learn how to
use the print command to examine the value of more complex expressions. You’ll also
learn the set command, which allows you to assign new values to variables. We assume
you are working in the directory containing this appendix’s examples and have compiled
for debugging with the -g compiler option.

1. Starting debugging. Type gdb figI_03 to start the GNU debugger.

2. Inserting a breakpoint. Set a breakpoint at line 20 in the source code by typing
break 20 (Fig. I.15).

3. Running the program and reaching a breakpoint. Type run to begin the debug-
ging process (Fig. I.16). This will cause main to execute until the breakpoint at
line 20 is reached. This suspends program execution and switches the program
into break mode. The statement in line 20 is the next statement that will execute.

4. Evaluating arithmetic and Boolean expressions. Recall from Section I.2 that once
the debugger enters break mode, you can explore the values of the program’s vari-
ables using the print command. You can also use print to evaluate arithmetic
and Boolean expressions. Type print withdrawalAmount - 2. This expression re-
turns the value 11 (Fig. I.17), but does not actually change the value of with-

(gdb) break 20
Breakpoint 1 at 0x400a4c: file figI_03.cpp, line 20.
(gdb)

Fig. I.15 | Setting a breakpoint in the program.

(gdb) run
Starting program: /home/pauldeitel/Documents/examples/appI/figI_03
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

Breakpoint 1, main () at figI_03.cpp:20
20 account1.withdraw(withdrawalAmount); // try to subtract from ac-
count1
(gdb)

Fig. I.16 | Running the program until the breakpoint at line 25 is reached.

cpphtp10_appI.fm Page 9 Tuesday, February 28, 2017 2:00 PM

I_10 Appendix I Using the GNU C++ Debugger

drawalAmount. Type print withdrawalAmount == 11. Expressions containing
the == symbol return bool values. The value returned is false (Fig. I.17) because
withdrawalAmount withdrawalAmount still contains 13.

5. Modifying values. You can change the values of variables during the program’s
execution in the debugger. This can be valuable for experimenting with different
values and for locating logic errors. You can use the debugger’s set command to
change a variable’s value. Type set withdrawalAmount = 42 to change the value
of withdrawalAmount, then type print withdrawalAmount to display its new
value (Fig. I.18).

6. Viewing the program result. Type continue to continue program execution. Line
21 of Fig. I.3 executes, passing withdrawalAmount to Account member function
withdraw. Function main then displays the new balance. Note that the result is
$8 (Fig. I.19). This shows that the preceding step changed the value of with-
drawalAmount from the value 13 that you input to 42.

7. Using the quit command. Use the quit command to end the debugging session
(Fig. I.20). This command causes the debugger to terminate.

(gdb) print withdrawalAmount - 2
$1 = 11
(gdb) print withdrawalAmount == 11
$2 = false
(gdb)

Fig. I.17 | Printing expressions with the debugger.

(gdb) set withdrawalAmount = 42
(gdb) print withdrawalAmount
$3 = 42
(gdb)

Fig. I.18 | Setting the value of a variable while in break mode.

(gdb) continue
Continuing.
account1 balance: $8
[Inferior 1 (process 53717) exited normally]
(gdb)

Fig. I.19 | Using a modified variable in the execution of a program.

(gdb) quit
pauldeitel@ubuntu:~/Documents/examples/appI$

Fig. I.20 | Exiting the debugger using the quit command.

cpphtp10_appI.fm Page 10 Tuesday, February 28, 2017 2:00 PM

I.4 step, finish and next Commands I_11

In this section, you used the debugger’s print command to evaluate arithmetic and
Boolean expressions. You also learned how to use the set command to modify the value
of a variable during your program’s execution.

I.4 Controlling Execution Using the step, finish and
next Commands
Sometimes you’ll need to execute a program line by line to find and fix errors. Walking
through a portion of your program this way can help you verify that a function’s code ex-
ecutes correctly. The commands in this section allow you to execute a function line by line,
execute all the statements of a function at once or execute only the remaining statements
of a function (if you’ve already executed some statements within the function).

1. Starting the debugger. Start the debugger by typing gdb figI_03.

2. Setting a breakpoint. Type break 20 to set a breakpoint at line 20.

3. Running the program. Run the program by typing run, then enter 13 at the
prompt. After the program displays its two output messages, the debugger indi-
cates that the breakpoint has been reached and displays the code at line 20. The
debugger then pauses and wait for the next command to be entered.

4. Using the step command. The step command executes the next statement in the
program. If the next statement to execute is a function call, control transfers to
the called function. The step command enables you to enter a function and
study its individual statements. For instance, you can use the print and set com-
mands to view and modify the variables within the function. Type step to enter
the withdraw member function of class Account (Fig. I.2). The debugger indi-
cates that the step has been completed and displays the next executable statement
(Fig. I.21)—in this case, line 28 of class Account (Fig. I.2).

5. Using the finish command. After you’ve stepped into the withdraw member
function, type finish. This command executes the remaining statements in the
function and returns control to the place where the function was called. The fin-
ish command executes the remaining statements in member function withdraw,
then pauses at line 23 in main (Fig. I.22). In lengthy functions, you may want to
look at a few key lines of code, then continue debugging the caller’s code. The
finish command is useful for situations in which you do not want to step
through the remainder of a function line by line.

6. Using the continue command to continue execution. Enter the continue com-
mand to continue execution until the program terminates.

(gdb) step
Account::withdraw (this=0x7fffffffdef0, amount=13) at Account.cpp:28
28 if (amount <= balance) { // withdrawal amount OK
(gdb)

Fig. I.21 | Using the step command to enter a function.

cpphtp10_appI.fm Page 11 Tuesday, February 28, 2017 2:00 PM

I_12 Appendix I Using the GNU C++ Debugger

7. Running the program again. Breakpoints persist until the end of the debugging
session in which they are set. So, the breakpoint you set in Step 2 is still set. Type
run to run the program and enter 13 at the prompt. As in Step 3, the program
runs until the breakpoint at line 20 is reached, then the debugger pauses and waits
for the next command (Fig. I.23).

8. Using the next command. Type next. This command behaves like the step com-
mand, except when the next statement to execute contains a function call. In that
case, the called function executes in its entirety and the program advances to the
next executable line after the function call (Fig. I.24). In Step 4, the step com-
mand entered the called function. In this example, the next command executes
Account member function withdraw, then the debugger pauses at line 23.

9. Using the quit command. Use the quit command to end the debugging session
(Fig. I.25). While the program is running, this command causes the program to
immediately terminate rather than execute the remaining statements in main.

(gdb) finish
Run till exit from #0 Account::withdraw (this=0x7fffffffdef0, amount=13)
 at Account.cpp:28
main () at figI_03.cpp:23
23 cout << "account1 balance: $" << account1.getBalance() << endl;
(gdb)

Fig. I.22 | Using the finish command to complete execution of a function and return to the
calling function.

(gdb) run
Starting program: /home/pauldeitel/Documents/examples/appI/figI_03
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

Breakpoint 1, main () at figI_03.cpp:20
20 account1.withdraw(withdrawalAmount); // try to subtract from ac-
count1
(gdb)

Fig. I.23 | Restarting the program.

(gdb) next
23 cout << "account1 balance: $" << account1.getBalance() << endl;
(gdb)

Fig. I.24 | Using the next command to execute a function in its entirety.

cpphtp10_appI.fm Page 12 Tuesday, February 28, 2017 2:00 PM

I.5 watch Command I_13

In this section, you used the debugger’s step and finish commands to debug func-
tions called during your program’s execution. You saw how the next command can step
over a function call. You also learned that the quit command ends a debugging session.

I.5 watch Command
The watch command tells the debugger to watch a data member. When that data member
is about to change, the debugger will notify you. In this section, you’ll use the watch com-
mand to see how the Account object’s data member balance is modified during execution.

1. Starting the debugger. Start the debugger by typing gdb figI_03.

2. Setting a breakpoint and running the program. Type break 9 to set a breakpoint
at line 9. Then, run the program with the command run. The debugger and pro-
gram will pause at the breakpoint at line 9 (Fig. I.26).

3. Watching a class’s data member. Set a watch on account1’s balance data mem-
ber by typing watch account1.balance (Fig. I.27). This watch is labeled as
watchpoint 2 because watchpoints are labeled with the same sequence of num-
bers as breakpoints. You can set a watch on any variable or data member of an
object currently in scope. Whenever the value of a watched variable changes, the
debugger enters break mode and notifies you that the value has changed.

(gdb) quit
A debugging session is active.

Inferior 1 [process 53741] will be killed.

Quit anyway? (y or n) y
pauldeitel@ubuntu:~/Documents/examples/appI$

Fig. I.25 | Exiting the debugger using the quit command.

(gdb) break 9
Breakpoint 1 at 0x4009be: file figI_03.cpp, line 9.
(gdb) run
Starting program: /home/pauldeitel/Documents/examples/appI/figI_03

Breakpoint 1, main () at figI_03.cpp:9
9 Account account1{50}; // create Account object
(gdb)

Fig. I.26 | Running the program until the first breakpoint.

(gdb) watch account1.balance
Hardware watchpoint 2: account1.balance
(gdb)

Fig. I.27 | Setting a watchpoint on a data member.

cpphtp10_appI.fm Page 13 Tuesday, February 28, 2017 2:00 PM

I_14 Appendix I Using the GNU C++ Debugger

4. Executing the constructor. Use the next command to execute the constructor and
initialize the account1 object’s balance data member. The debugger indicates
that the balance data member’s value changed, shows the old and new values and
enters break mode at line 11 (Fig. I.28).

5. Exiting the constructor. Type finish to complete the constructor’s execution and
return to main.

6. Withdrawing money from the account. Type continue to continue execution
and enter a withdrawal value at the prompt. The program executes normally.
Line 20 of Fig. I.3 calls Account member function withdraw to reduce the Ac-
count object’s balance by a specified amount. Line 29 of Fig. I.2 inside function
withdraw changes the value of balance. The debugger notifies you of this change
(in this case, showing the line number of withdraw’s closing brace) and enters
break mode (Fig. I.29).

7. Continuing execution. Type continue—the program will finish executing func-
tion main because the program does not attempt any additional changes to bal-
ance. The debugger removes the watch on account1’s balance data member
because the account1 object goes out of scope when function main ends. Remov-

(gdb) next
Hardware watchpoint 2: account1.balance

Old value = 4197424
New value = 0
Account::Account (this=0x7fffffffdef0, initialBalance=50) at Account.cpp:11
11 if (initialBalance > 0) {
(gdb)

Fig. I.28 | Stepping into the constructor.

(gdb) continue
Continuing.
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

Hardware watchpoint 2: account1.balance

Old value = 50
New value = 37
Account::withdraw (this=0x7fffffffdef0, amount=13) at Account.cpp:34
34 }
(gdb)

Fig. I.29 | Entering break mode when a variable is changed.

cpphtp10_appI.fm Page 14 Tuesday, February 28, 2017 2:00 PM

I.5 watch Command I_15

ing the watchpoint causes the debugger to enter break mode. Type continue
again to finish execution of the program (Fig. I.30).

8. Restarting the debugger and resetting the watch on the variable. Type run to re-
start the debugger. Once again, set a watch on account1 data member balance
by typing watch account1.balance. This watchpoint is labeled as watchpoint 3.
Type continue to continue execution (Fig. I.31).

9. Removing the watch on the data member. Suppose you want to watch a data
member for only part of a program’s execution. You can remove the debugger’s
watch on variable balance by typing delete 3 (Fig. I.32). Type continue—the
program will finish executing without reentering break mode.

(gdb) continue
Continuing.
account1 balance: $37

Watchpoint 2 deleted because the program has left the block in
which its expression is valid.
__libc_start_main (main=0x4009a6 <main()>, argc=1, argv=0x7fffffffdff8,
 init=<optimized out>, fini=<optimized out>, rtld_fini=<optimized out>,
 stack_end=0x7fffffffdfe8) at libc-start.c:323
323 libc-start.c: No such file or directory.
(gdb) continue
Continuing.
[Inferior 1 (process 53746) exited normally]
(gdb)

Fig. I.30 | Continuing to the end of the program.

(gdb) run
Starting program: /home/pauldeitel/Documents/examples/appI/figI_03

Breakpoint 1, main () at figI_03.cpp:9
9 Account account1{50}; // create Account object
(gdb) watch account1.balance
Hardware watchpoint 3: account1.balance
(gdb) continue
Continuing.
Hardware watchpoint 3: account1.balance

Old value = 4197424
New value = 0
Account::Account (this=0x7fffffffdef0, initialBalance=50) at Account.cpp:11
11 if (initialBalance > 0) {
(gdb)

Fig. I.31 | Resetting the watch on a data member.

cpphtp10_appI.fm Page 15 Tuesday, February 28, 2017 2:00 PM

I_16 Appendix I Using the GNU C++ Debugger

In this section, you used the watch command to enable the debugger to notify you
when the value of a variable changes. You used the delete command to remove a watch
on a data member before the end of the program.

I.6 Wrap-Up
In this appendix, you learned how to insert and remove breakpoints in the debugger.
Breakpoints allow you to pause program execution so you can examine variable values with
the debugger’s print command, which can help you locate and fix logic errors. You used
the print command to examine the value of an expression, and you used the set com-
mand to change the value of a variable. You also learned debugger commands (including
the step, finish and next commands) that can be used to determine whether a function
is executing correctly. You learned how to use the watch command to keep track of a data
member throughout the scope of that data member. Finally, you learned how to use the
info break command to list all the breakpoints and watchpoints set for a program and the
delete command to remove individual breakpoints and watchpoints.

(gdb) delete 3
(gdb) continue
Continuing.
account1 balance: $50

Enter withdrawal amount for account1: 13

attempting to subtract 13 from account1 balance

account1 balance: $37
[Inferior 1 (process 53751) exited normally]
(gdb)

Fig. I.32 | Removing a watch.

cpphtp10_appI.fm Page 16 Tuesday, February 28, 2017 2:00 PM

