
23Other Topics

O b j e c t i v e s
In this chapter you’ll:

■ Understand storage classes
and storage duration.

■ Use const_cast to
temporarily treat a const
object as a non-const
object.

■ Use mutable members in
const objects.

■ Use namespaces.

■ Use operator keywords.

■ Use class-member pointer
operators .* and ->*.

■ Use multiple inheritance.

■ Understand the role of
virtual base classes in
multiple inheritance.

cpphtp10_23.fm Page 1 Wednesday, April 12, 2017 1:48 PM

23_2 Chapter 23 Other Topics

23.1 Introduction
We now consider additional C++ features, including:

• Storage classes and storage duration, which determine an object’s lifetime in a
program.

• The const_cast operator, which allows you to add or remove the const qualifi-
cation of a variable.

• Storage classes and storage duration, which determine the period during which
that identifier exists in memory.

• namespaces, which can be used to ensure that every identifier in a program has a
unique name and can help resolve naming conflicts caused by using libraries that
have the same variable, function or class names.

• Operator keywords that are useful for programmers who have keyboards that do
not support certain characters used in operator symbols, such as !, &, ^, ~ and |.

• Special operators that you can use with pointers to class members to access a data
member or member function without knowing its name in advance.

• Multiple inheritance, which enables a derived class to inherit the members of sev-
eral base classes. As part of this introduction, we discuss potential problems with
multiple inheritance and how virtual inheritance can be used to solve them.

23.2 const_cast Operator
C++ provides the const_cast operator for casting away const or volatile qualification.
You declare a variable with the volatile qualifier when you expect the variable to be mod-
ified by hardware or other programs not known to the compiler. Declaring a variable vol-
atile indicates that the compiler should not optimize the use of that variable because
doing so could affect the ability of those other programs to access and modify the vola-
tile variable.

23.1 Introduction
23.3 const_cast Operator
23.3 Storage Classes and Storage Duration

23.3.1 Storage Duration
23.3.2 Local Variables and Automatic

Storage Duration
23.3.3 Static Storage Duration
23.3.4 mutable Class Members
23.3.5 Mechanical Demonstration of a

mutable Data Member
23.4 namespaces

23.4.1 Defining namespaces
23.4.2 Accessing namespace Members

with Qualified Names

23.4.3 using Directives Should Not Be
Placed in Headers

23.4.4 Aliases for namespace Names
23.5 Operator Keywords
23.6 Pointers to Class Members

(.* and ->*)
23.7 Multiple Inheritance
23.8 Multiple Inheritance and virtual

Base Classes
23.9 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

cpphtp10_23.fm Page 2 Wednesday, April 12, 2017 1:48 PM

23.2 const_cast Operator 23_3

In general, it’s dangerous to use the const_cast operator, because it allows a program
to modify a variable that was declared const. There are cases in which it’s desirable, or
even necessary, to cast away const-ness. For example, older C and C++ libraries might
provide functions that have non-const parameters and that do not modify their parame-
ters—if you wish to pass const data to such a function, you’d need to cast away the data’s
const-ness; otherwise, the compiler would report errors.

Similarly, you could pass non-const data to a function that treats the data as if it were
constant, then returns that data as a constant. In such cases, you might need to cast away
the const-ness of the returned data, as we demonstrate in Fig. 23.1.

In this program, function maximum (lines 9–11) receives two C strings as const char*
parameters and returns a const char* that points to the larger of the two strings. Function
main declares the two C strings as non-const char arrays (lines 14–15); thus, these arrays
are modifiable. In main, we wish to output the larger of the two C strings, then modify
that C string by converting it to uppercase letters.

1 // Fig. 23.1: fig23_01.cpp
2 // Demonstrating const_cast.
3 #include <iostream>
4 #include <cstring> // contains prototypes for functions strcmp and strlen
5 #include <cctype> // contains prototype for function toupper
6 using namespace std;
7
8 // returns the larger of two C strings
9 const char* maximum(const char* first, const char* second) {

10 return (strcmp(first, second) >= 0 ? first : second);
11 }
12
13 int main() {
14 char s1[]{"hello"}; // modifiable array of characters
15 char s2[]{"goodbye"}; // modifiable array of characters
16
17 // const_cast required to allow the const char* returned by maximum
18 // to be assigned to the char* variable maxPtr
19
20
21 cout << "The larger string is: " << maxPtr << endl;
22
23 for (size_t i{0}; i < strlen(maxPtr); ++i) {
24 maxPtr[i] = toupper(maxPtr[i]);
25 }
26
27 cout << "The larger string capitalized is: " << maxPtr << endl;
28 }

The larger string is: hello
The larger string capitalized is: HELLO

Fig. 23.1 | Demonstrating operator const_cast.

char* maxPtr{const_cast<char*>(maximum(s1, s2))};

cpphtp10_23.fm Page 3 Wednesday, April 12, 2017 1:48 PM

23_4 Chapter 23 Other Topics

Function maximum’s two parameters are of type const char*, so the function’s return
type also must be declared as const char*. If the return type is specified as only char*, the
compiler issues an error message indicating that the value being returned cannot be con-
verted from const char* to char*—a dangerous conversion, because it attempts to treat
data that the function believes to be const as if it were non-const data.

Even though function maximum believes the data to be constant, we know that the orig-
inal arrays in main do not contain constant data. Therefore, main should be able to modify
the contents of those arrays as necessary. Since we know these arrays are modifiable, we use
const_cast (line 19) to cast away the const-ness of the pointer returned by maximum, so we
can then modify the data in the array representing the larger of the two C strings. We can
then use the pointer as the name of a character array in the for statement (lines 23–25) to
convert the contents of the larger string to uppercase letters. Without the const_cast in
line 19, this program will not compile, because you are not allowed to assign a pointer of
type const char* to a pointer of type char*.

23.3 Storage Classes and Storage Duration
The programs you’ve seen so far use identifiers for variable names and functions. The at-
tributes of variables include name, type, size and value. Each identifier in a program also
has other attributes, including scope, linkage and storage duration.

As we discussed in Section 6.11, an identifier’s scope is where the identifier can be ref-
erenced in a program. Some identifiers can be referenced throughout a program; others can
be referenced from only limited portions of a program. An identifier’s linkage determines
whether it’s known only in the source file where it’s declared or across multiple files that are
compiled, then linked together. An identifier’s storage-class specifier helps determine its
storage duration and linkage.

Storage Class Specifiers
C++ provides several storage-class specifiers that determine a variable’s storage duration:
extern, mutable, static and thread_local. Storage-class specifier mutable is used exclu-
sively with classes and thread_local is used in multithreaded applications.

23.3.1 Storage Duration
An identifier’s storage duration determines the period during which that identifier’s storage
exists in memory. Some exist briefly, some are repeatedly created and destroyed, and others
exist for a program’s entire execution.

The storage-class specifiers can be split into four storage durations: automatic, static,
dynamic and thread. In Chapter 10, you learned that you can request additional memory
in your program during the program’s execution—so-called dynamic memory allocation.
Variables allocated dynamically have dynamic storage duration. Chapter 24 discusses thread
storage duration. The rest of this section focuses on automatic and static storage duration.

Error-Prevention Tip 23.1
In general, a const_cast should be used only when it is known in advance that the orig-
inal data is not constant. Otherwise, unexpected results may occur.

cpphtp10_23.fm Page 4 Wednesday, April 12, 2017 1:48 PM

23.3 Storage Classes and Storage Duration 23_5

23.3.2 Local Variables and Automatic Storage Duration
Variables with automatic storage duration include:

• local variables declared in functions

• function parameters

Such variables—often called automatic variables—are created when program execution en-
ters the block in which they’re defined, they exist while the block is active and they’re de-
stroyed when the program exits the block. An automatic variable exists only from where
it’s defined to the closing brace of the block in which the definition appears, or for the entire
function body in the case of a function parameter. Local variables are of automatic storage
duration by default.

23.3.3 Static Storage Duration
Keywords extern and static declare identifiers for variables with static storage duration
and functions. Variables with static storage duration exist in memory from the point at
which the program begins execution and until the program terminates. Such a variable is
initialized once when its declaration is encountered. For functions, the name of the function
exists when the program begins execution. Even though function names and static-
storage-duration variables exist from the start of program execution, their scope deter-
mines where they can be used in the program.

Identifiers with Static Storage Duration
There are two types of identifiers with static storage duration—external identifiers (such as
global variables) and local variables declared with the storage-class specifier static. Global
variables are created by placing variable declarations outside any class or function defini-
tion. Global variables retain their values throughout a program’s execution. Global vari-
ables and global functions can be referenced by any function that follows their declarations
or definitions in the source file.

Performance Tip 23.1
Automatic storage is a means of conserving memory, because automatic storage duration
variables exist in memory only when the block in which they’re defined is executing.

Good Programming Practice 23.1
Declare variables as close to where they’re first used as possible.

Software Engineering Observation 23.1
Declaring a variable as global rather than local allows unintended side effects to occur
when a function that does not need access to the variable accidentally or maliciously
modifies it. This is another example of the principle of least privilege—in general, except
for truly global resources such as cin and cout, the use of global variables should be
avoided unless there are unique performance requirements.

Software Engineering Observation 23.2
Variables used only in a particular function should be declared as local variables in that
function rather than as global variables.

cpphtp10_23.fm Page 5 Wednesday, April 12, 2017 1:48 PM

23_6 Chapter 23 Other Topics

static Local Variables
Local variables declared static are still known only in the function in which they’re de-
clared, but, unlike automatic variables, static local variables retain their values when the
function returns to its caller. The next time the function is called, the static local variables
contain the values they had when the function last completed execution. The following
statement declares local variable count to be static and to be initialized to 1:

All numeric variables of static storage duration are initialized to zero by default, but it’s
nevertheless a good practice to explicitly initialize all variables.

Storage-class specifiers extern and static have special meaning when they’re applied
explicitly to external identifiers such as global variables and global function names. In
Appendix F, C Legacy Code Topics, we discuss using extern and static with external
identifiers and multiple-source-file programs.

23.3.4 mutable Class Members
In Section 23.2, we introduced the const_cast operator, which allowed us to remove the
“const-ness” of a type. A const_cast operation can also be applied to a data member of
a const object from the body of a const member function of that object’s class. This en-
ables the const member function to modify the data member, even though the object is
considered to be const in the body of that function. Such an operation might be per-
formed when most of an object’s data members should be considered const, but a partic-
ular data member still needs to be modified.

As an example, consider a linked list that maintains its contents in sorted order.
Searching through the linked list does not require modifications to the data of the linked
list, so the search function could be a const member function of the linked-list class. How-
ever, it’s conceivable that a linked-list object, in an effort to make future searches more effi-
cient, might keep track of the location of the last successful match. If the next search
operation attempts to locate an item that appears later in the list, the search could begin
from the location of the last successful match, rather than from the beginning of the list.
To do this, the const member function that performs the search must be able to modify
the data member that keeps track of the last successful search.

If a data member such as the one described above should always be modifiable, C++
provides the storage-class specifier mutable as an alternative to const_cast. A mutable
data member is always modifiable, even in a const member function or const object.
Though mutable is a storage-class specifier, it does not affect a variable’s storage duration
or linkage.

mutable and const_cast are used in different contexts. For a const object with no
mutable data members, operator const_cast must be used every time a member is to be
modified. This greatly reduces the chance of a member being accidentally modified
because the member is not permanently modifiable. Operations involving const_cast are

static unsigned int count{1};

Portability Tip 23.1
The effect of attempting to modify an object that was defined as constant, regardless of
whether that modification was made possible by a const_cast or C-style cast, varies
among compilers.

cpphtp10_23.fm Page 6 Wednesday, April 12, 2017 1:48 PM

23.3 Storage Classes and Storage Duration 23_7

typically hidden in a member function’s implementation. The user of a class might not be
aware that a member is being modified.

23.3.5 Mechanical Demonstration of a mutable Data Member
Figure 23.2 demonstrates using a mutable member. The program defines class Test-
Mutable (lines 7–16), which contains a constructor, function getValue and a private
data member value that’s declared mutable. Lines 11–13 define function getValue as a
const member function that returns a copy of value. Notice that the function increments
mutable data member value in the return statement. Normally, a const member func-
tion cannot modify data members unless the object on which the function operates—i.e.,
the one to which this points—is cast to a non-const type via const_cast. Because value
is mutable (line 15), this const function can modify the data.

Line 19 declares const TestMutable object test and initializes it to 99. Line 21 calls
the const member function getValue, which adds one to value and returns its previous
contents. Notice that the compiler allows the call to member function getValue on the

Software Engineering Observation 23.3
mutable members are useful in classes that have “secret” implementation details that do
not contribute to a client’s use of an object of the class.

1 // Fig. 23.2: fig23_02.cpp
2 // Demonstrating storage-class specifier mutable.
3 #include <iostream>
4 using namespace std;
5
6 // class TestMutable definition
7 class TestMutable {
8 public:
9 TestMutable(int v = 0) : value{v} { }

10
11 int getValue() const {
12 return ++value; // increments value
13 }
14 private:
15
16 };
17
18 int main() {
19 const TestMutable test{99};
20
21 cout << "Initial value: " << ;
22 cout << "\nModified value: " << << endl;
23 }

Initial value: 99
Modified value: 100

Fig. 23.2 | Demonstrating a mutable data member.

mutable int value; // mutable member

test.getValue()
test.getValue()

cpphtp10_23.fm Page 7 Wednesday, April 12, 2017 1:48 PM

23_8 Chapter 23 Other Topics

object test because it’s a const object and getValue is a const member function. How-
ever, getValue modifies variable value. Thus, when line 22 invokes getValue again, the
new value (100) is output to prove that the mutable data member was indeed modified.

23.4 namespaces
A program may include many identifiers defined in different scopes. Sometimes a variable
of one scope will collide with a variable of the same name in a different scope, possibly cre-
ating a naming conflict. Such overlapping can occur at many levels. Identifier overlapping
occurs frequently in third-party libraries that happen to use the same names for global
identifiers (such as functions). This can cause compilation errors.

C++ solves this problem with namespaces. Each namespace defines a scope in which
identifiers and variables are placed. To use a namespace member, either the member’s
name must be qualified with the namespace name and the scope resolution operator (::), as
in

or a using directive must appear before the name is used in the program. Typically, such
using statements are placed at the beginning of the file in which members of the name-
space are used. For example, placing the following using directive at the beginning of a
source-code file

specifies that members of namespace MyNameSpace can be used in the file without preced-
ing each member with MyNameSpace and the scope resolution operator (::).

A using directive of the form

brings one name into the scope where the directive appears. A using directive of the form

brings all the names from the specified namespace (std) into the scope where the directive
appears.

Not all namespaces are guaranteed to be unique. Two third-party vendors might inad-
vertently use the same identifiers for their namespace names. Figure 23.3 demonstrates the
use of namespaces.

MyNameSpace::member

using namespace MyNameSpace;

using std::cout;

using namespace std;

Error-Prevention Tip 23.2
Precede a member with its namespace name and the scope resolution operator (::) to pre-
vent naming conflicts.

1 // Fig. 23.3: fig23_03.cpp
2 // Demonstrating namespaces.
3 #include <iostream>
4 using namespace std;

Fig. 23.3 | Demonstrating the use of namespaces. (Part 1 of 3.)

cpphtp10_23.fm Page 8 Wednesday, April 12, 2017 1:48 PM

23.4 namespaces 23_9

5
6 int integer1 = 98; // global variable
7
8 // create namespace Example
9 {

10 // declare two constants and one variable
11 const double PI = 3.14159;
12 const double E = 2.71828;
13 int integer1 = 8;
14
15 void printValues(); // prototype
16
17 // nested namespace
18 {
19 // define enumeration
20 enum Years {FISCAL1 = 2017, FISCAL2, FISCAL3};
21 }
22 }
23
24 // create unnamed namespace
25 {
26 double doubleInUnnamed = 88.22; // declare variable
27 }
28
29 int main() {
30 // output value doubleInUnnamed of unnamed namespace
31 cout << "doubleInUnnamed = " << doubleInUnnamed;
32
33 // output global variable
34 cout << "\n(global) integer1 = " << integer1;
35
36 // output values of Example namespace
37 cout << "\nPI = " << << "\nE = " << Example::E
38 << "\ninteger1 = " << << "\nFISCAL3 = "
39 << << endl;
40
41
42 }
43
44 // display variable and constant values
45 void Example::printValues() {
46 cout << "\nIn printValues:\ninteger1 = " << integer1 << "\nPI = "
47 << PI << "\nE = " << E << "\ndoubleInUnnamed = "
48 << doubleInUnnamed << "\n(global) integer1 = " <<
49 << "\nFISCAL3 = " << Inner::FISCAL3 << endl;
50 }

doubleInUnnamed = 88.22
(global) integer1 = 98
PI = 3.14159
E = 2.71828
integer1 = 8
FISCAL3 = 2019

Fig. 23.3 | Demonstrating the use of namespaces. (Part 2 of 3.)

namespace Example

namespace Inner

namespace

Example::PI
Example::integer1

Example::Inner::FISCAL3

Example::printValues(); // invoke printValues function

::integer1

cpphtp10_23.fm Page 9 Wednesday, April 12, 2017 1:48 PM

23_10 Chapter 23 Other Topics

23.4.1 Defining namespaces
Lines 9–22 use the keyword namespace to define namespace Example. The body of a
namespace is delimited by braces ({}). The namespace Example’s members consist of two
constants (PI and E in lines 11–12), an int (integer1 in line 13), a function (printVal-
ues in line 15) and a nested namespace (Inner in lines 18–21). Notice that member in-
teger1 has the same name as global variable integer1 (line 6). Variables that have the same
name must have different scopes—otherwise compilation errors occur. A namespace can
contain constants, data, classes, nested namespaces, functions, etc. Definitions of name-
spaces must occupy the global scope or be nested within other namespaces. Unlike classes,
different namespace members can be defined in separate namespace blocks—each stan-
dard library header has a namespace block placing its contents in namespace std.

Lines 25–27 create an unnamed namespace containing the member doubleInUn-
named. Variables, classes and functions in an unnamed namespace are accessible only in the
current translation unit (a .cpp file and the files it includes). However, unlike variables,
classes or functions with static linkage, those in the unnamed namespace may be used as
template arguments. The unnamed namespace has an implicit using directive, so its mem-
bers appear to occupy the global namespace, are accessible directly and do not have to be
qualified with a namespace name. Global variables are also part of the global namespace
and are accessible in all scopes following the declaration in the file.

23.4.2 Accessing namespace Members with Qualified Names
Line 31 outputs the value of variable doubleInUnnamed, which is directly accessible as part
of the unnamed namespace. Line 34 outputs the value of global variable integer1. For
both of these variables, the compiler first attempts to locate a local declaration of the vari-
ables in main. Since there are no local declarations, the compiler assumes those variables
are in the global namespace.

Lines 37–39 output the values of PI, E, integer1 and FISCAL3 from namespace
Example. Notice that each must be qualified with Example:: because the program does not
provide any using directive or declarations indicating that it will use members of name-
space Example. In addition, member integer1 must be qualified, because a global vari-
able has the same name. Otherwise, the global variable’s value is output. FISCAL3 is a
member of nested namespace Inner, so it must be qualified with Example::Inner::.

In printValues:
integer1 = 8
PI = 3.14159
E = 2.71828
doubleInUnnamed = 88.22
(global) integer1 = 98
FISCAL3 = 2019

Software Engineering Observation 23.4
Each separate translation unit has its own unique unnamed namespace; i.e., the
unnamed namespace replaces the static linkage specifier.

Fig. 23.3 | Demonstrating the use of namespaces. (Part 3 of 3.)

cpphtp10_23.fm Page 10 Wednesday, April 12, 2017 1:48 PM

23.5 Operator Keywords 23_11

Function printValues (defined in lines 45–50) is a member of Example, so it can
access other members of the Example namespace directly without using a namespace qual-
ifier. Line 46–49 output integer1, PI, E, doubleInUnnamed, global variable integer1 and
FISCAL3. Notice that PI and E are not qualified with Example. Variable doubleInUnnamed
is still accessible, because it’s in the unnamed namespace and the variable name does not con-
flict with any other members of namespace Example. The global version of integer1 must
be qualified with the scope resolution operator (::), because its name conflicts with a
member of namespace Example. Also, FISCAL3 must be qualified with Inner::. When
accessing members of a nested namespace, the members must be qualified with the name-
space name (unless the member is being used inside the nested namespace).

23.4.3 using Directives Should Not Be Placed in Headers
namespaces are particularly useful in large-scale applications that use many class libraries. In
such cases, there’s a higher likelihood of naming conflicts. For such projects, there should
never be a using directive in a header—this brings the corresponding names into any file that
includes the header. This could result in name collisions and subtle, hard-to-find errors. In-
stead, use only fully qualified names in headers (for example, std::cout or std::string).

23.4.4 Aliases for namespace Names
namespaces can be aliased. This might be useful when dealing with long namespace iden-
tifiers or nested namespaces. For example, assuming we have the namespace identifier
CPlusPlusHowToProgram, the statement

creates the shorter namespace alias CPPHTP for CPlusPlusHowToProgram. Similarly, you
could define the an alias for the nested namespace Inner in Fig. 23.3 as follows:

23.5 Operator Keywords
The C++ standard provides operator keywords (Fig. 23.4) that can be used in place of sev-
eral C++ operators. You can use operator keywords if you have keyboards that do not sup-
port certain characters such as !, &, ^, ~, |, etc.

Common Programming Error 23.1
Placing main in a namespace is a compilation error.

namespace CPPHTP = CPlusPlusHowToProgram;

namespace Innermost = Example::Inner;

Operator Operator keyword Description

Logical operator keywords

&& and logical AND

|| or logical OR

! not logical NOT

Fig. 23.4 | Operator keyword alternatives to operator symbols. (Part 1 of 2.)

cpphtp10_23.fm Page 11 Wednesday, April 12, 2017 1:48 PM

23_12 Chapter 23 Other Topics

Figure 23.5 demonstrates the operator keywords. Microsoft Visual C++ requires the
header <ciso646> (line 4) to use the operator keywords. In GNU C++ and LLVM, the
operator keywords are always defined and this header is not required.

Inequality operator keyword

!= not_eq inequality

Bitwise operator keywords

& bitand bitwise AND

| bitor bitwise inclusive OR

^ xor bitwise exclusive OR

~ compl bitwise complement

Bitwise assignment operator keywords

&= and_eq bitwise AND assignment

|= or_eq bitwise inclusive OR assignment

^= xor_eq bitwise exclusive OR assignment

1 // Fig. 23.5: fig23_05.cpp
2 // Demonstrating operator keywords.
3 #include <iostream>
4
5 using namespace std;
6
7 int main() {
8 bool a{true};
9 bool b{false};

10 int c{2};
11 int d{3};
12
13 // sticky setting that causes bool values to display as true or false
14 cout << boolalpha;
15
16 cout << "a = " << a << "; b = " << b
17 << "; c = " << c << "; d = " << d;
18
19 cout << "\n\nLogical operator keywords:";
20 cout << "\n a and a: " << ;
21 cout << "\n a and b: " << ;
22 cout << "\n a or a: " << ;
23 cout << "\n a or b: " << ;
24 cout << "\n not a: " << ;
25 cout << "\n not b: " << ;
26 cout << "\na not_eq b: " << ;

Fig. 23.5 | Demonstrating operator keywords. (Part 1 of 2.)

Operator Operator keyword Description

Fig. 23.4 | Operator keyword alternatives to operator symbols. (Part 2 of 2.)

#include <ciso646> // enables operator keywords in Microsoft Visual C++

(a and a)
(a and b)
(a or a)
(a or b)
(not a)
(not b)
(a not_eq b)

cpphtp10_23.fm Page 12 Wednesday, April 12, 2017 1:48 PM

23.6 Pointers to Class Members (.* and ->*) 23_13

The program declares and initializes two bool variables and two integer variables
(lines 8–11). Logical operations (lines 20–26) are performed with bool variables a and b
using the various logical operator keywords. Bitwise operations (lines 29–35) are per-
formed with the int variables c and d using the various bitwise operator keywords. The
result of each operation is output.

23.6 Pointers to Class Members (.* and ->*)
C++ provides the .* and ->* operators for accessing class members via pointers. This is a
rarely used capability, primarily for advanced C++ programmers. We provide only a me-
chanical example of using pointers to class members here. Figure 23.6 demonstrates the
pointer-to-class-member operators.

27
28 cout << "\n\nBitwise operator keywords:";
29 cout << "\nc bitand d: " << ;
30 cout << "\n c bitor d: " << ;
31 cout << "\n c xor d: " << ;
32 cout << "\n compl c: " << ;
33 cout << "\nc and_eq d: " << ;
34 cout << "\n c or_eq d: " << ;
35 cout << "\nc xor_eq d: " << << endl;
36 }

a = true; b = false; c = 2; d = 3

Logical operator keywords:
 a and a: true
 a and b: false
 a or a: true
 a or b: true
 not a: false
 not b: true
a not_eq b: true

Bitwise operator keywords:
c bitand d: 2
 c bitor d: 3
 c xor d: 1
 compl c: -3
c and_eq d: 2
 c or_eq d: 3
c xor_eq d: 0

1 // Fig. 23.6: fig23_06.cpp
2 // Demonstrating operators .* and ->*.
3 #include <iostream>
4 using namespace std;
5

Fig. 23.6 | Demonstrating operatprs .* and ->*. (Part 1 of 2.)

Fig. 23.5 | Demonstrating operator keywords. (Part 2 of 2.)

(c bitand d)
(c bitor d)
(c xor d)
(compl c)
(c and_eq d)
(c or_eq d)
(c xor_eq d)

cpphtp10_23.fm Page 13 Wednesday, April 12, 2017 1:48 PM

23_14 Chapter 23 Other Topics

The program declares class Test (lines 7–14), which provides public member func-
tion test and public data member value. Lines 16–17 provide prototypes for the func-
tions arrowStar (defined in lines 27–30) and dotStar (defined in lines 33–36), which
demonstrate the ->* and .* operators, respectively. Line 30 creates object test, and line
21 assigns 8 to its data member value. Lines 22–23 call functions arrowStar and dotStar
with the address of the object test.

Line 28 in function arrowStar declares and initializes variable memberPtr as a pointer
to a member function. In this declaration, Test::* indicates that the variable memberPtr is
a pointer to a member of class Test. To declare a pointer to a function, enclose the pointer
name preceded by * in parentheses, as in (Test::*memberPtr). A pointer to a function
must specify, as part of its type, both the return type of the function it points to and the
parameter list of that function. The function’s return type appears to the left of the left
parenthesis and the parameter list appears in a separate set of parentheses to the right of the
pointer declaration. In this case, the function has a void return type and no parameters.

6 // class Test definition
7 class Test {
8 public:
9 void func() {

10 cout << "In func\n";
11 }
12
13 int value; // public data member
14 };
15
16 void arrowStar(Test*); // prototype
17 void dotStar(Test*); // prototype
18
19 int main() {
20 Test test;
21 test.value = 8; // assign value 8
22 arrowStar(&test); // pass address to arrowStar
23 dotStar(&test); // pass address to dotStar
24 }
25
26 // access member function of Test object using ->*
27 void arrowStar(Test* testPtr) {
28
29
30 }
31
32 // access members of Test object data member using .*
33 void dotStar(Test* testPtr2) {
34
35
36 }

In test function
8

Fig. 23.6 | Demonstrating operatprs .* and ->*. (Part 2 of 2.)

void (Test::*memberPtr)() = &Test::func; // declare function pointer
(testPtr->*memberPtr)(); // invoke function indirectly

int Test::*vPtr = &Test::value; // declare pointer
cout << (*testPtr2).*vPtr << endl; // access value

cpphtp10_23.fm Page 14 Wednesday, April 12, 2017 1:48 PM

23.7 Multiple Inheritance 23_15

The pointer memberPtr is initialized with the address of class Test’s member function
named test. The header of the function must match the function pointer’s declaration—
i.e., function test must have a void return type and no parameters. Notice that the right
side of the assignment uses the address operator (&) to get the address of the member func-
tion test. Also, notice that neither the left side nor the right side of the assignment in line 32
refers to a specific object of class Test. Only the class name is used with the scope resolution
operator (::). Line 29 invokes the member function stored in memberPtr (i.e., test),
using the ->* operator. Because memberPtr is a pointer to a member of a class, the ->*
operator must be used rather than the -> operator to invoke the function.

Line 34 declares and initializes vPtr as a pointer to an int data member of class Test.
The right side of the assignment specifies the address of the data member value. Line 35
dereferences the pointer testPtr2, then uses the .* operator to access the member to
which vPtr points. The client code can create pointers to class members for only those class
members that are accessible to the client code. In this example, both member function test
and data member value are publicly accessible.

23.7 Multiple Inheritance
In Chapters 11 and 12, we discussed single inheritance, in which each class is derived from
exactly one base class. In C++, a class may be derived from more than one base class—a tech-
nique known as multiple inheritance in which a derived class inherits the members of two
or more base classes. This powerful capability encourages interesting forms of software re-
use but can cause a variety of ambiguity problems. Multiple inheritance is a difficult concept
that should be used only by experienced programmers. In fact, some of the problems associated
with multiple inheritance are so subtle that newer programming languages, such as Java
and C#, do not enable a class to derive from more than one base class.

A common problem with multiple inheritance is that each of the base classes might
contain data members or member functions that have the same name. This can lead to
ambiguity problems when you attempt to compile. Consider the multiple-inheritance
example (Figs. 23.7–23.11). Class Base1 (Fig. 23.7) contains one protected int data

Common Programming Error 23.2
Declaring a member-function pointer without enclosing the pointer name in parentheses
is a syntax error.

Common Programming Error 23.3
Declaring a member-function pointer without preceding the pointer name with a class
name followed by the scope resolution operator (::) is a syntax error.

Common Programming Error 23.4
Attempting to use the -> or * operator with a pointer to a class member generates syntax
errors.

Software Engineering Observation 23.5
Great care is required in the design of a system to use multiple inheritance properly; it
should not be used when single inheritance and/or composition will do the job.

cpphtp10_23.fm Page 15 Wednesday, April 12, 2017 1:48 PM

23_16 Chapter 23 Other Topics

member—value (line 20), a constructor (line 9) that sets value and public member func-
tion getData (line 11) that returns value.

Class Base2 (Fig. 23.8) is similar to class Base1, except that its protected data is a
char named letter (line 13). Like class Base1, Base2 has a public member function get-
Data, but this function returns the value of char data member letter.

Class Derived (Figs. 23.9–23.10) inherits from both class Base1 and class Base2
through multiple inheritance. Class Derived has a private data member of type double
named real (Fig. 23.9, line 19), a constructor to initialize all the data of class Derived and
a public member function getReal that returns the value of double variable real.

1 // Fig. 23.7: Base1.h
2 // Definition of class Base1
3 #ifndef BASE1_H
4 #define BASE1_H
5
6 // class Base1 definition
7 class Base1 {
8 public:
9 Base1(int parameterValue) : value{parameterValue} {}

10
11 {return value;}
12 protected: // accessible to derived classes
13 int value; // inherited by derived class
14 };
15
16 #endif // BASE1_H

Fig. 23.7 | Demonstrating multiple inheritance—Base1.h.

1 // Fig. 23.8: Base2.h
2 // Definition of class Base2
3 #ifndef BASE2_H
4 #define BASE2_H
5
6 // class Base2 definition
7 class Base2 {
8 public:
9 Base2(char characterData) : letter{characterData} {}

10
11 {return letter;}
12 protected: // accessible to derived classes
13 char letter; // inherited by derived class
14 };
15
16 #endif // BASE2_H

Fig. 23.8 | Demonstrating multiple inheritance—Base2.h.

int getData() const

char getData() const

cpphtp10_23.fm Page 16 Wednesday, April 12, 2017 1:48 PM

23.7 Multiple Inheritance 23_17

To indicate multiple inheritance (in Fig. 23.9) we follow the colon (:) after class
Derived with a comma-separated list of base classes (line 13). In Fig. 23.10, notice that
constructor Derived explicitly calls base-class constructors for each of its base classes—
Base1 and Base2—using the member-initializer syntax (line 9). The base-class constructors
are called in the order that the inheritance is specified, not in the order in which their construc-

1 // Fig. 23.9: Derived.h
2 // Definition of class Derived which inherits
3 // multiple base classes (Base1 and Base2).
4 #ifndef DERIVED_H
5 #define DERIVED_H
6
7 #include <iostream>
8 #include "Base1.h"
9 #include "Base2.h"

10 using namespace std;
11
12 // class Derived definition
13 class Derived : public Base1, public Base2 {
14 friend ostream &operator<<(ostream &, const Derived &);
15 public:
16 Derived(int, char, double);
17 double getReal() const;
18 private:
19 double real; // derived class's private data
20 };
21
22 #endif // DERIVED_H

Fig. 23.9 | Demonstrating multiple inheritance—Derived.h.

1 // Fig. 23.10: Derived.cpp
2 // Member-function definitions for class Derived
3 #include "Derived.h"
4
5
6
7
8
9

10
11 // return real
12 double Derived::getReal() const {return real;}
13
14 // display all data members of Derived
15 ostream &operator<<(ostream &output, const Derived &derived) {
16 output << " Integer: " << derived.value << "\n Character: "
17 << derived.letter << "\nReal number: " << derived.real;
18 return output; // enables cascaded calls
19 } <<

Fig. 23.10 | Demonstrating multiple inheritance—Derived.cpp.

// constructor for Derived calls constructors for
// class Base1 and class Base2.
// use member initializers to call base-class constructors
Derived::Derived(int integer, char character, double double1)
 : Base1{integer}, Base2{character}, real{double1} { }

cpphtp10_23.fm Page 17 Wednesday, April 12, 2017 1:48 PM

23_18 Chapter 23 Other Topics

tors are mentioned. Also, if the base-class constructors are not explicitly called in the member-
initializer list, their default constructors will be called implicitly.

The overloaded stream insertion operator (Fig. 23.10, lines 15–19) uses its second
parameter—a reference to a Derived object—to display a Derived object’s data. This
operator function is a friend of Derived, so operator<< can directly access all of class
Derived’s protected and private members, including the protected data member
value (inherited from class Base1), protected data member letter (inherited from class
Base2) and private data member real (declared in class Derived).

Now let’s examine the main function (Fig. 23.11) that tests the classes in Figs. 23.7–
23.10. Line 10 creates Base1 object base1 and initializes it to the int value 10. Line 11
creates Base2 object base2 and initializes it to the char value 'Z'. Line 12 creates Derived
object derived and initializes it to contain the int value 7, the char value 'A' and the
double value 3.5.

1 // Fig. 23.11: fig23_11.cpp
2 // Driver for multiple-inheritance example.
3 #include <iostream>
4 #include "Base1.h"
5 #include "Base2.h"
6 #include "Derived.h"
7 using namespace std;
8
9 int main() {

10 Base1 base1{10}; // create Base1 object
11 Base2 base2{'Z'}; // create Base2 object
12
13
14 // print data members of base-class objects
15 cout << "Object base1 contains integer " << base1.getData()
16 << "\nObject base2 contains character " << base2.getData()
17 << "\nObject derived contains:\n" << derived << "\n\n";
18
19 // print data members of derived-class object
20 // scope resolution operator resolves getData ambiguity
21 cout << "Data members of Derived can be accessed individually:"
22 << "\n Integer: " <<
23 << "\n Character: " <<
24 << "\nReal number: " << << "\n\n";
25 cout << "Derived can be treated as an object of either base class:\n";
26
27 // treat Derived as a Base1 object
28
29 cout << "base1Ptr->getData() yields " << << '\n';
30
31 // treat Derived as a Base2 object
32
33 cout << "base2Ptr->getData() yields " << << endl;
34 }

Fig. 23.11 | Demonstrating multiple inheritance. (Part 1 of 2.)

Derived derived{7, 'A', 3.5}; // create Derived object

derived.Base1::getData()
derived.Base2::getData()
derived.getReal()

Base1* base1Ptr = &derived;
base1Ptr->getData()

Base2* base2Ptr = &derived;
base2Ptr->getData()

cpphtp10_23.fm Page 18 Wednesday, April 12, 2017 1:48 PM

23.7 Multiple Inheritance 23_19

Lines 15–17 display each object’s data values. For objects base1 and base2, we invoke
each object’s getData member function. Even though there are two getData functions in
this example, the calls are not ambiguous. In line 15, the compiler knows that base1 is an
object of class Base1, so class Base1’s getData is called. In line 16, the compiler knows that
base2 is an object of class Base2, so class Base2’s getData is called. Line 17 displays the
contents of object derived using the overloaded stream insertion operator.

Resolving Ambiguity Issues That Arise When a Derived Class Inherits Member
Functions of the Same Name from Multiple Base Classes
Lines 21–24 output the contents of object derived again by using the get member func-
tions of class Derived. However, there is an ambiguity problem, because this object con-
tains two getData functions, one inherited from class Base1 and one inherited from class
Base2. This problem is easy to solve by using the scope resolution operator. The expression
derived.Base1::getData() gets the value of the variable inherited from class Base1 (i.e.,
the int variable named value) and derived.Base2::getData() gets the value of the vari-
able inherited from class Base2 (i.e., the char variable named letter). The double value
in real is printed without ambiguity with the call derived.getReal()—there are no other
member functions with that name in the hierarchy.

Demonstrating the Is-A Relationships in Multiple Inheritance
The is-a relationships of single inheritance also apply in multiple-inheritance relationships.
To demonstrate this, line 28 assigns the address of object derived to the Base1 pointer
base1Ptr. This is allowed because an object of class Derived is an object of class Base1.
Line 29 invokes Base1 member function getData via base1Ptr to obtain the value of only
the Base1 part of the object derived. Line 32 assigns the address of object derived to the
Base2 pointer base2Ptr. This is allowed because an object of class Derived is an object of
class Base2. Line 32 invokes Base2 member function getData via base2Ptr to obtain the
value of only the Base2 part of the object derived.

Object base1 contains integer 10
Object base2 contains character Z
Object derived contains:
 Integer: 7
 Character: A
Real number: 3.5

Data members of Derived can be accessed individually:
 Integer: 7
 Character: A
Real number: 3.5

Derived can be treated as an object of either base class:
base1Ptr->getData() yields 7
base2Ptr->getData() yields A

Fig. 23.11 | Demonstrating multiple inheritance. (Part 2 of 2.)

cpphtp10_23.fm Page 19 Wednesday, April 12, 2017 1:48 PM

23_20 Chapter 23 Other Topics

23.8 Multiple Inheritance and virtual Base Classes
In Section 23.7, we discussed multiple inheritance, the process by which one class inherits
from two or more classes. Multiple inheritance is used, for example, in the C++ standard
library to form class basic_iostream (Fig. 23.12).

Class basic_ios is the base class for both basic_istream and basic_ostream, each
of which is formed with single inheritance. Class basic_iostream inherits from both
basic_istream and basic_ostream. This enables class basic_iostream objects to pro-
vide the functionality of basic_istreams and basic_ostreams. In multiple-inheritance
hierarchies, the inheritance described in Fig. 23.12 is referred to as diamond inheritance

Because classes basic_istream and basic_ostream each inherit from basic_ios, a
potential problem exists for basic_iostream. Class basic_iostream could contain two
copies of the members of class basic_ios—one inherited via class basic_istream and one
inherited via class basic_ostream). Such a situation would be ambiguous and would result
in a compilation error, because the compiler would not know which version of the mem-
bers from class basic_ios to use. In this section, you’ll see how using virtual base classes
solves the problem of inheriting duplicate copies of an indirect base class.

Compilation Errors Produced When Ambiguity Arises in Diamond Inheritance
Figure 23.13 demonstrates the ambiguity that can occur in diamond inheritance. Class
Base (lines 8–11) contains pure virtual function print (line 10). Classes DerivedOne
(lines 14–18) and DerivedTwo (lines 21–25) each publicly inherit from Base and override
function print. Class DerivedOne and class DerivedTwo each contain a base-class subob-
ject—i.e., the members of class Base in this example.

Fig. 23.12 | Multiple inheritance to form class basic_iostream.

1 // Fig. 23.13: fig23_13.cpp
2 // Attempting to polymorphically call a function that is
3 // multiply inherited from two base classes.
4 #include <iostream>
5 using namespace std;
6
7 // class Base definition
8 class Base {

Fig. 23.13 | Attempting to call a multiply inherited function polymorphically. (Part 1 of 2.)

basic_ios

basic_ostreambasic_istream

basic_iostream

cpphtp10_23.fm Page 20 Wednesday, April 12, 2017 1:48 PM

23.8 Multiple Inheritance and virtual Base Classes 23_21

Class Multiple (lines 28–32) inherits from both class DerivedOne and class
DerivedTwo. In class Multiple, function print is overridden to call DerivedTwo’s print
(line 31). Notice that we must qualify the print call with the class name DerivedTwo to
specify which version of print to call.

Function main (lines 34–48) declares objects of classes Multiple (line 35),
DerivedOne (line 36) and DerivedTwo (line 37). Line 38 declares an array of Base*

9 public:
10
11 };
12
13 // class DerivedOne definition
14 class DerivedOne : public Base {
15 public:
16 // override print function
17
18 };
19
20 // class DerivedTwo definition
21 class DerivedTwo : public Base {
22 public:
23 // override print function
24
25 };
26
27 // class Multiple definition
28 class Multiple : public DerivedOne, public DerivedTwo {
29 public:
30 // qualify which version of function print
31
32 };
33
34 int main() {
35 Multiple both; // instantiate Multiple object
36 DerivedOne one; // instantiate DerivedOne object
37 DerivedTwo two; // instantiate DerivedTwo object
38 Base* array[3]; // create array of base-class pointers
39
40
41 array[1] = &one;
42 array[2] = &two;
43
44 // polymorphically invoke print
45 for (int i{0}; i < 3; ++i) {
46 array[i] -> print();
47 }
48 }

Microsoft Visual C++ compiler error message:

c:\cpphtp10_examples\ch23\fig23_13\fig23_13.cpp(54) : error C2594: '=' :
 ambiguous conversions from 'Multiple *' to 'Base *'

Fig. 23.13 | Attempting to call a multiply inherited function polymorphically. (Part 2 of 2.)

virtual void print() const = 0; // pure virtual

void print() const {cout << "DerivedOne\n";}

void print() const {cout << "DerivedTwo\n";}

void print() const {DerivedTwo::print();}

array[0] = &both; // ERROR--ambiguous

cpphtp10_23.fm Page 21 Wednesday, April 12, 2017 1:48 PM

23_22 Chapter 23 Other Topics

pointers. Each array element is initialized with the address of an object (lines 40–42). An
error occurs when the address of both—an object of class Multiple—is assigned to
array[0]. The object both actually contains two subobjects of type Base, so the compiler
does not know which subobject the pointer array[0] should point to, and it generates a
compilation error indicating an ambiguous conversion.

Eliminating Duplicate Subobjects with virtual Base-Class Inheritance
The problem of duplicate subobjects is resolved with virtual inheritance. When a base
class is inherited as virtual, only one subobject will appear in the derived class—a process
called virtual base-class inheritance. Figure 23.14 revises the program of Fig. 23.13 to
use a virtual base class.

1 // Fig. 23.14: fig23_14.cpp
2 // Using virtual base classes.
3 #include <iostream>
4 using namespace std;
5
6 // class Base definition
7 class Base {
8 public:
9

10 };
11
12 // class DerivedOne definition
13 class DerivedOne : {
14 public:
15 // override print function
16
17 };
18
19 // class DerivedTwo definition
20 class DerivedTwo : {
21 public:
22 // override print function
23
24 };
25
26 // class Multiple definition
27 class Multiple : public DerivedOne, public DerivedTwo {
28 public:
29 // qualify which version of function print
30
31 };
32
33 int main() {
34 Multiple both; // instantiate Multiple object
35 DerivedOne one; // instantiate DerivedOne object
36 DerivedTwo two; // instantiate DerivedTwo object
37 Base* array[3];
38
39

Fig. 23.14 | Using virtual base classes. (Part 1 of 2.)

virtual void print() const = 0; // pure virtual

virtual public Base

void print() const {cout << "DerivedOne\n";}

virtual public Base

void print() const {cout << "DerivedTwo\n";}

void print() const {DerivedTwo::print();}

array[0] = &both;

cpphtp10_23.fm Page 22 Wednesday, April 12, 2017 1:48 PM

23.9 Wrap-Up 23_23

The key change is that classes DerivedOne (line 13) and DerivedTwo (line 20) each
inherit from Base by specifying virtual public Base. Since both classes inherit from
Base, they each contain a Base subobject. The benefit of virtual inheritance is not clear
until class Multiple inherits from DerivedOne and DerivedTwo (line 27). Since each of the
base classes used virtual inheritance to inherit class Base’s members, the compiler ensures
that only one Base subobject is inherited into class Multiple. This eliminates the ambi-
guity error generated by the compiler in Fig. 23.13. The compiler now allows the implicit
conversion of the derived-class pointer (&both) to the base-class pointer array[0] in line
39 in main. The for statement in lines 44–46 polymorphically calls print for each object.

Constructors in Multiple-Inheritance Hierarchies with virtual Base Classes
Implementing hierarchies with virtual base classes is simpler if default constructors are
used for the base classes. Figures 23.13 and 23.14 use compiler-generated default construc-
tors. If a virtual base class provides a constructor that requires arguments, the derived-
class implementations become more complicated, because the most derived class must ex-
plicitly invoke the virtual base class’s constructor.

23.9 Wrap-Up
In this chapter, you learned how to use the const_cast operator to remove the const qual-
ification of a variable. We showed how to use namespaces to ensure that every identifier in
a program has a unique name and explained how namespaces can help resolve naming con-
flicts. You saw several operator keywords to use if your keyboards do not support certain
characters used in operator symbols, such as !, &, ^, ~ and |. We showed how the mutable
storage-class specifier enables you to indicate that a data member should always be modifi-
able, even when it appears in an object that’s currently being treated as a const. We also
showed the mechanics of using pointers to class members and the ->* and .* operators. Fi-
nally, we introduced multiple inheritance and discussed problems associated with allowing
a derived class to inherit the members of several base classes. As part of this discussion, we
demonstrated how virtual inheritance can be used to solve those problems.

40 array[1] = &one;
41 array[2] = &two;
42
43 // polymorphically invoke function print
44 for (int i = 0; i < 3; ++i) {
45 array[i]->print();
46 }
47 }

DerivedTwo
DerivedOne
DerivedTwo

Software Engineering Observation 23.6
Providing a default constructor for virtual base classes simplifies hierarchy design.

Fig. 23.14 | Using virtual base classes. (Part 2 of 2.)

cpphtp10_23.fm Page 23 Wednesday, April 12, 2017 1:48 PM

23_24 Chapter 23 Other Topics

Self-Review Exercises
23.1 Fill in the blanks for each of the following:

a) The operator qualifies a member with its namespace.
b) The operator allows an object’s “const-ness” to be cast away.
c) Because an unnamed namespace has an implicit using directive, its members appear to

occupy the , are accessible directly and do not have to be qualified with a name-
space name.

d) Operator is the operator keyword for inequality.
e) allows a class to be derived from more than one base class.
f) When a base class is inherited as , only one subobject of the base class will ap-

pear in the derived class.

23.2 State which of the following are true and which are false. If a statement is false, explain why.
a) When passing a non-const argument to a const function, the const_cast operator

should be used to cast away the “const-ness” of the function.
b) A mutable data member cannot be modified in a const member function.
c) namespaces are guaranteed to be unique.
d) Like class bodies, namespace bodies also end in semicolons.
e) namespaces cannot have namespaces as members.

Answers to Self-Review Exercises
23.1 a) binary scope resolution (::). b) const_cast. c) global namespace. d) not_eq. e) multiple
inheritance. f) virtual.

23.2 a) False. It’s legal to pass a non-const argument to a const function. However, when pass-
ing a const reference or pointer to a non-const function, the const_cast operator
should be used to cast away the “const-ness” of the reference or pointer

b) False. A mutable data member is always modifiable, even in a const member function.
c) False. Programmers might inadvertently choose the namespace already in use.
d) False. namespace bodies do not end in semicolons.
e) False. namespaces can be nested.

Exercises
23.3 (Fill in the Blanks) Fill in the blanks for each of the following:

a) Keyword specifies that a namespace or namespace member is being used.
b) Operator is the operator keyword for logical OR.
c) Storage specifier allows a member of a const object to be modified.
d) The qualifier specifies that an object can be modified by other programs.
e) Precede a member with its name and the scope resolution operator

if the possibility exists of a scoping conflict.
f) The body of a namespace is delimited by .
g) For a const object with no data members, operator must be used

every time a member is to be modified.

23.4 (Currency namespace) Write a namespace, Currency, that defines constant members ONE,
TWO, FIVE, TEN, TWENTY, FIFTY and HUNDRED. Write two short programs that use Currency. One pro-
gram should make all constants available and the other should make only FIVE available.

23.5 (Namespaces) Given the namespaces in Fig. 23.15, determine whether each statement is true
or false. Explain any false answers.

a) Variable kilometers is visible within namespace Data.

cpphtp10_23.fm Page 24 Wednesday, April 12, 2017 1:48 PM

 Exercises 23_25

b) Object string1 is visible within namespace Data.
c) Constant POLAND is not visible within namespace Data.
d) Constant GERMANY is visible within namespace Data.
e) Function function is visible to namespace Data.
f) Namespace Data is visible to namespace CountryInformation.
g) Object map is visible to namespace CountryInformation.
h) Object string1 is visible within namespace RegionalInformation.

23.6 (mutable vs. const_cast) Compare and contrast mutable and const_cast. Give at least one
example of when one might be preferred over the other. [Note: This exercise does not require any
code.]

23.7 (Modifying a const Variable) Write a program that uses const_cast to modify a const vari-
able. [Hint: Use a pointer in your solution to point to the const identifier.]

23.8 (virtual Base Classes) What problem do virtual base classes solve?

23.9 (virtual Base Classes) Write a program that uses virtual base classes. The class at the top
of the hierarchy should provide a constructor that takes at least one argument (i.e., do not provide
a default constructor). What challenges does this present for the inheritance hierarchy?

1 namespace CountryInformation {
2 using namespace std;
3 enum Countries {POLAND, SWITZERLAND, GERMANY, AUSTRIA, CZECH_REPUBLIC };
4
5 int kilometers;
6 string string1;
7
8 namespace RegionalInformation {
9 short getPopulation(); // assume definition exists

10 MapData map; // assume definition exists
11 }
12 }
13
14 namespace Data {
15 using namespace CountryInformation::RegionalInformation;
16 void* function(void*, int);
17 }

Fig. 23.15 | namespaces for Exercise 23.5.

cpphtp10_23.fm Page 25 Wednesday, April 12, 2017 1:48 PM

