
24C++11: Additional Features

O b j e c t i v e s
In this chapter you’ll:

■ Avoid memory leaks by using
smart pointers to manage
dynamic memory.

■ Use multithreading to
execute compute-intensive
tasks in parallel, especially on
multicore systems.

■ Use rvalue references and
move semantics to eliminate
unnecessary object copies,
improving program
performance.

■ Learn about C++11 language
features, including raw string
literals static_assert,
noexcept, decltype,
constexpr, variadic
templates and template
aliases.

■ Use = default to generate
default versions of the special
member functions (that is,
the constructors, assignment
operators and destructor that
the compiler can generate for
a class).

■ Create functions that can
receive list initalizers as
arguments.

■ Use regular expressions to
search for strings, validate
data and replace substrings.

cpphtp9_24_CPP11.fm Page 1 Saturday, May 18, 2013 2:10 PM

24-2 Chapter 24 C++11: Additional Features

Note: This chapter is online so that we can update it as key C++ compilers gradually pro-
vide more support for C++11.

24.1 Introduction
In this chapter, we consider additional C++11 features, including more features of the core
language and various C++ Standard Library enhancements. This chapter is not exhaus-
tive—many of C++11’s new features are meant for class library implementers and are be-
yond this book’s scope. The topics in this chapter do not need to be read sequentially.
Throughout the chapter, we provide links to many online resources for further study.

The chapter’s examples were tested on Microsoft Visual C++ 2012, GNU C++ 4.7
and Apple Xcode LLVM. We noted any issues we encountered with these compilers—
support for many C++11 features varies across compilers.

24.2 Smart Pointers
Many common bugs in C and C++ code are related to pointers. Smart pointers help you
avoid errors by providing additional functionality to standard pointers. This functionality
typically strengthens the process of memory allocation and deallocation. Smart pointers
also help you write exception safe code. If a program throws an exception before delete
has been called on a pointer, it creates a memory leak. After an exception is thrown, a smart
pointer’s destructor will still be called, which calls delete on the pointer for you.

Section 17.9 showed one of the smart pointer classes—unique_ptr—which is
responsible for managing dynamically allocated memory. A unique_ptr automatically
calls delete to free its associated dynamic memory when the unique_ptr is destroyed or

24.1 Introduction
24.2 Smart Pointers

24.2.1 Reference Counted shared_ptr
24.2.2 weak_ptr: shared_ptr Observer

24.3 Multithreading
24.3.1 Multithreading Headers in C++11
24.3.2 Running Multithreaded Programs
24.3.3 Overview of This Section’s Examples
24.3.4 Example: Sequential Execution of

Two Compute-Intensive Tasks
24.3.5 Example: Multithreaded Execution of

Two Compute-Intensive Tasks
24.4 noexcept Exception Specifications

and the noexcept Operator
24.5 Move Semantics

24.5.1 rvalue references
24.5.2 Move-Enabling Class Array
24.5.3 move and move_backward

Algorithms
24.5.4 emplace Container Member

Functions

24.6 static_assert
24.7 decltype
24.8 constexpr
24.9 Defaulted Special Member Functions

24.10 Variadic Templates
24.11 tuples
24.12 initializer_list Class

Template
24.13 Inherited Constructors with Multiple

Inheritance
24.14 Regular Expressions with the regex

Library
24.14.1 Regular Expression Example
24.14.2 Validating User Input with Regular

Expressions
24.14.3 Replacing and Splitting Strings

24.15 Raw String Literals
24.16 Wrap-Up

cpphtp9_24_CPP11.fm Page 2 Saturday, May 18, 2013 2:10 PM

24.2 Smart Pointers 24-3

goes out of scope. In addition to unique_ptr, C++11 provides other smart pointer options
with additional functionality. The examples in this section were tested on the Microsoft
Visual C++ 2012, Apple Xcode LLVM (in Xcode 4.6) and GNU C++ 4.7 compilers.

24.2.1 Reference Counted shared_ptr
shared_ptrs (from header <memory> hold an internal pointer to a resource (e.g., a dynam-
ically allocated object) that may be shared with other objects in the program. You can have
any number of shared_ptrs to the same resource. shared_ptrs really do share the re-
source—if you change the resource with one shared_ptr, the changes also will be “seen”
by the other shared_ptrs. The internal pointer is deleted once the last shared_ptr to the
resource is destroyed. shared_ptrs use reference counting to determine how many
shared_ptrs point to the resource. Each time a new shared_ptr to the resource is created,
the reference count increases, and each time one is destroyed, the reference count decreas-
es. When the reference count reaches zero, the internal pointer is deleted and the memory
is released.

shared_ptrs are useful in situations where multiple pointers to the same resource are
needed, such as in STL containers. shared_ptrs can safely be copied and used in STL con-
tainers.

shared_ptrs also allow you to determine how the resource will be destroyed. For most
dynamically allocated objects, delete is used. However, some resources require more
complex cleanup. In that case, you can supply a custom deleter function, or function
object, to the shared_ptr constructor. The deleter determines how to destroy the
resource. When the reference count reaches zero and the resource is ready to be destroyed,
the shared_ptr calls the custom deleter function. This functionality enables a shared_ptr
to manage almost any kind of resource.

Example Using shared_ptr
Figures 24.1–24.2 define a simple class to represent a Book with a string to represent the
title of the Book. The destructor for class Book (Fig. 24.2, lines 12–15) displays a message
on the screen indicating that an instance is being destroyed. We use this class to demon-
strate the basic functionality of shared_ptr.

1 // Fig. 24.1: Book.h
2 // Declaration of class Book.
3 #ifndef BOOK_H
4 #define BOOK_H
5 #include <string>
6 using namespace std;
7
8 class Book
9 {

10 public:
11 explicit Book(const string &bookTitle); // constructor
12 ~Book(); // destructor
13 string title; // title of the Book
14 };
15 #endif // BOOK_H

Fig. 24.1 | Declaration of class Book.

cpphtp9_24_CPP11.fm Page 3 Saturday, May 18, 2013 2:10 PM

24-4 Chapter 24 C++11: Additional Features

Creating shared_ptrs
The program in Fig. 24.3 uses shared_ptrs (from the header <memory>) to manage several
instances of class Book. We also create a typedef, BookPtr, as an alias for the type
shared_ptr<Book> (line 10). Line 28 creates a shared_ptr to a Book titled "C++ How to
Program" (using the BookPtr typedef). The shared_ptr constructor takes as its argument
a pointer to an object. We pass it the pointer returned from the new operator. This creates
a shared_ptr that manages the Book object and sets the reference count to 1. The con-
structor can also take another shared_ptr, in which case it shares ownership of the re-
source with the other shared_ptr and the reference count is increased by 1. The first
shared_ptr to a resource should always be created using the new operator. A shared_ptr
created with a regular pointer assumes it’s the first shared_ptr assigned to that resource
and starts the reference count at one. If you make multiple shared_ptrs with the same
pointer, the shared_ptrs won’t acknowledge each other and the reference count will be
wrong. When the shared_ptrs are destroyed, they both call delete on the resource.

1 // Fig. 24.2: Book.cpp
2 // Book member-function definitions.
3 #include <iostream>
4 #include <string>
5 #include "Book.h"
6 using namespace std;
7
8 Book::Book(const string &bookTitle) : title(bookTitle)
9 {

10 }
11
12 Book::~Book()
13 {
14
15 } // end of destructor

Fig. 24.2 | Book member-function definitions.

1 // Fig. 24.3: fig24_03.cpp
2 // Demonstrate shared_ptrs.
3 #include <algorithm>
4 #include <iostream>
5
6 #include <vector>
7 #include "Book.h"
8 using namespace std;
9

10
11
12 // a custom delete function for a pointer to a Book
13 void deleteBook(Book* book)
14 {
15 cout << "Custom deleter for a Book, ";

Fig. 24.3 | shared_ptr example program. (Part 1 of 3.)

cout << "Destroying Book: " << title << endl;

#include <memory>

typedef shared_ptr< Book > BookPtr; // shared_ptr to a Book

cpphtp9_24_CPP11.fm Page 4 Saturday, May 18, 2013 2:10 PM

24.2 Smart Pointers 24-5

16 delete book; // delete the Book pointer
17 } // end of deleteBook
18
19 // compare the titles of two Books for sorting
20 bool compareTitles(BookPtr bookPtr1, BookPtr bookPtr2)
21 {
22 return (bookPtr1->title < bookPtr2->title);
23 } // end of compareTitles
24
25 int main()
26 {
27 // create a shared_ptr to a Book and display the reference count
28
29 cout << "Reference count for Book " << << " is: "
30 << << endl;
31
32 // create another shared_ptr to the Book and display reference count
33
34 cout << "Reference count for Book " << bookPtr->title << " is: "
35 << bookPtr.use_count() << endl;
36
37 // change the Book’s title and access it from both pointers
38
39 cout << "The Book's title changed for both pointers: "
40 << "\nbookPtr: " << bookPtr->title
41 << "\nbookPtr2: " << bookPtr2->title << endl;
42
43 // create a std::vector of shared_ptrs to Books (BookPtrs)
44
45
46
47
48
49
50 // print the Books in the vector
51 cout << "\nBooks before sorting: " << endl;
52 for (int i = 0; i < books.size(); ++i)
53 cout << (books[i])->title << "\n";
54
55 // sort the vector by Book title and print the sorted vector
56
57 cout << "\nBooks after sorting: " << endl;
58 for (int i = 0; i < books.size(); ++i)
59 cout << (books[i])->title << "\n";
60
61 // create a shared_ptr with a custom deleter
62 cout << "\nshared_ptr with a custom deleter." << endl;
63
64
65
66 // shared_ptrs are going out of scope
67 cout << "\nAll shared_ptr objects are going out of scope." << endl;
68 } // end of main

Fig. 24.3 | shared_ptr example program. (Part 2 of 3.)

BookPtr bookPtr(new Book("C++ How to Program"));
bookPtr->title

bookPtr.use_count()

BookPtr bookPtr2(bookPtr);

bookPtr2->title = "Java How to Program";

vector< BookPtr > books;
books.push_back(BookPtr(new Book("C How to Program")));
books.push_back(BookPtr(new Book("VB How to Program")));
books.push_back(BookPtr(new Book("C# How to Program")));
books.push_back(BookPtr(new Book("C++ How to Program")));

sort(books.begin(), books.end(), compareTitles);

BookPtr bookPtr3(new Book("Small C++ How to Program"), deleteBook);
bookPtr3.reset(); // release the Book this shared_ptr manages

cpphtp9_24_CPP11.fm Page 5 Saturday, May 18, 2013 2:10 PM

24-6 Chapter 24 C++11: Additional Features

Manipulating shared_ptrs
Lines 29–30 display the Book’s title and the number of shared_ptrs referencing that in-
stance. Notice that we use the -> operator to access the Book’s data member title, as we
would with a regular pointer. shared_ptrs provide the pointer operators * and ->. We get
the reference count using the shared_ptr member function use_count, which returns the
number of shared_ptrs to the resource. Then we create another shared_ptr to the in-
stance of class Book (line 33). Here we use the shared_ptr constructor with the original
shared_ptr as its argument. You can also use the assignment operator (=) to create a
shared_ptr to the same resource. Lines 34–35 print the reference count of the original
shared_ptr to show that the count increased by one when we created the second
shared_ptr. As mentioned earlier, changes made to the resource of a shared_ptr are
“seen” by all shared_ptrs to that resource. When we change the title of the Book using
bookPtr2 (line 38), we can see the change when using bookPtr (lines 39–41).

Manipulating shared_ptrs in an STL Container
Next we demonstrate using shared_ptrs in an STL container. We create a vector of
BookPtrs (line 44) and add four elements (recall that BookPtr is a typedef for a
shared_ptr<Book>, line 10). Lines 51–53 print the contents of the vector. Then we sort
the Books in the vector by title (line 56). We use the function compareTitles (lines 20–
23) in the sort algorithm to compare the title data members of each Book alphabetically.

Reference count for Book C++ How to Program is: 1
Reference count for Book C++ How to Program is: 2

The Book's title changed for both pointers:
bookPtr: Java How to Program
bookPtr2: Java How to Program

Books before sorting:
C How to Program
VB How to Program
C# How to Program
C++ How to Program

Books after sorting:
C How to Program
C# How to Program
C++ How to Program
VB How to Program

shared_ptr with a custom deleter.
Custom deleter for a Book, Destroying Book: Small C++ How to Program

All shared_ptr objects are going out of scope.
Destroying Book: C How to Program
Destroying Book: C# How to Program
Destroying Book: C++ How to Program
Destroying Book: VB How to Program
Destroying Book: Java How to Program

Fig. 24.3 | shared_ptr example program. (Part 3 of 3.)

cpphtp9_24_CPP11.fm Page 6 Saturday, May 18, 2013 2:10 PM

24.2 Smart Pointers 24-7

shared_ptr Custom Deleter
Line 63 creates a shared_ptr with a custom deleter. We define the custom deleter func-
tion deleteBook (lines 13–17) and pass it to the shared_ptr constructor along with a
pointer to a new instance of class Book. When the shared_ptr destroys the instance of class
Book, it calls deleteBook with the internal Book * as the argument. Notice that delete-
Book takes a Book *, not a shared_ptr. A custom deleter function must take one argument
of the shared_ptr’s internal pointer type. deleteBook displays a message to show that the
custom deleter was called, then deletes the pointer. A primary use for custom deleters is
when using third-party C libraries. Rather than providing a class with a constructor and
destructor as a C++ library would, C libraries frequently provide one function that returns
a pointer to a struct representing a resource and another that does the necessary cleanup
when the resource is no longer needed. Using a custom deleter allows you to use a
shared_ptr to keep track of the resource and still ensure it is freed correctly.

Resetting a shared_ptr
We call the shared_ptr member function reset (line 64) to show the custom deleter at
work. The reset function releases the current resource and sets the shared_ptr to NULL.
If there are no other shared_ptrs to the resource, it’s destroyed. You can also pass a point-
er or shared_ptr representing a new resource to the reset function, in which case the
shared_ptr will manage the new resource. But, as with the constructor, you should only
use a regular pointer returned by the new operator.

shared_ptrs Are Destroyed When They Go Out of Scope
All the shared_ptrs and the vector go out of scope at the end of the main function and
are destroyed. When the vector is destroyed, so are the shared_ptrs in it. The program
output shows that each instance of class Book is destroyed automatically by the
shared_ptrs. There is no need to delete each pointer placed in the vector.

24.2.2 weak_ptr: shared_ptr Observer
A weak_ptr points to the resource managed by a shared_ptr without assuming any re-
sponsibility for it. The reference count for a shared_ptr doesn’t increase when a weak_ptr
references it. That means that the resource of a shared_ptr can be deleted while there are
still weak_ptrs pointing to it. When the last shared_ptr is destroyed, the resource is de-
leted and any remaining weak_ptrs are set to NULL. One use for weak_ptrs, as we’ll dem-
onstrate later in this section, is to avoid memory leaks caused by circular references.

A weak_ptr can’t directly access the resource it points to—you must create a
shared_ptr from the weak_ptr to access the resource. There are two ways to do this. You
can pass the weak_ptr to the shared_ptr constructor. That creates a shared_ptr to the
resource being pointed to by the weak_ptr and properly increases the reference count. If
the resource has already been deleted, the shared_ptr constructor will throw a
bad_weak_ptr exception. You can also call the weak_ptr member function lock, which
returns a shared_ptr to the weak_ptr’s resource. If the weak_ptr points to a deleted
resource (i.e., NULL), lock will return an empty shared_ptr (i.e., a shared_ptr to NULL).
lock should be used when an empty shared_ptr isn’t considered an error. You can access
the resource once you have a shared_ptr to it. weak_ptrs should be used in any situation
where you need to observe the resource but don’t want to assume any management respon-

cpphtp9_24_CPP11.fm Page 7 Saturday, May 18, 2013 2:10 PM

24-8 Chapter 24 C++11: Additional Features

sibilities for it. The following example demonstrates the use of weak_ptrs in circularly ref-
erential data, a situation in which two objects refer to each other internally.

Example Using weak_ptr
Figures 24.4–24.7 define classes Author and Book. Each class has a pointer to an instance
of the other class. This creates a circular reference between the two classes. Note that we
use both weak_ptrs and shared_ptrs to hold the cross reference to each class (Figs. 24.4
and 24.5, lines 20–21 in each figure). If we set the shared_ptrs, it creates a memory leak—
we’ll explain why soon and show how we can use the weak_ptrs to fix this problem.

1 // Fig. 24.4: Author.h
2 // Author class definition.
3 #ifndef AUTHOR_H
4 #define AUTHOR_H
5 #include <string>
6
7
8 using namespace std;
9

10 class Book; // forward declaration of class Book
11
12 // Author class definition
13 class Author
14 {
15 public:
16 Author(const string &authorName); // constructor
17 ~Author(); // destructor
18 void printBookTitle(); // print the title of the Book
19 string name; // name of the Author
20
21
22 };
23 #endif // AUTHOR_H

Fig. 24.4 | Author class definition.

1 // Fig. 24.5: Book.h
2 // Book class definition.
3 #ifndef BOOK_H
4 #define BOOK_H
5 #include <string>
6
7
8 using namespace std;
9

10 class Author; // forward declaration of class Author
11
12 // Book class definition
13 class Book
14 {

Fig. 24.5 | Book class definition. (Part 1 of 2.)

#include <memory>

weak_ptr< Book > weakBookPtr; // Book the Author wrote
shared_ptr< Book > sharedBookPtr; // Book the Author wrote

#include <memory>

cpphtp9_24_CPP11.fm Page 8 Saturday, May 18, 2013 2:10 PM

24.2 Smart Pointers 24-9

Classes Author and Book define destructors that each display a message to indicate
when an instance of either class is destroyed (Figs. 24.6 and 24.7, lines 15–18). Each class
also defines a member function to print the title of the Book and the Author’s name (lines
21–34 in each figure). Recall that you can’t access the resource directly through a
weak_ptr, so first we create a shared_ptr from the weak_ptr data member (line 24 in each
figure). If the resource the weak_ptr is referencing doesn’t exist, the call to the lock func-
tion returns a shared_ptr which points to NULL and the condition fails. Otherwise, the
new shared_ptr contains a valid pointer to the weak_ptr’s resource, and we can access the
resource. If the condition in line 24 is true (i.e., bookPtr and authorPtr aren’t NULL), we
print the reference count to show that it increased with the creation of the new
shared_ptr, then we print the title of the Book and Author’s name. The shared_ptr is
destroyed when the function exits so the reference count decreases by one.

15 public:
16 Book(const string &bookTitle); // constructor
17 ~Book(); // destructor
18 void printAuthorName(); // print the name of the Author
19 string title; // title of the Book
20
21
22 };
23 #endif // BOOK_H

1 // Fig. 24.6: Author.cpp
2 // Author member-function definitions.
3 #include <iostream>
4 #include <string>
5 #include <memory>
6 #include "Author.h"
7 #include "Book.h"
8
9 using namespace std;

10
11 Author::Author(const string &authorName) : name(authorName)
12 {
13 }
14
15 Author::~Author()
16 {
17
18 } // end of destructor
19
20 // print the title of the Book this Author wrote
21 void Author::printBookTitle()
22 {
23 // if weakBookPtr.lock() returns a non-empty shared_ptr
24 if ()
25 {

Fig. 24.6 | Author member-function definitions. (Part 1 of 2.)

Fig. 24.5 | Book class definition. (Part 2 of 2.)

weak_ptr< Author > weakAuthorPtr; // Author of the Book
shared_ptr< Author > sharedAuthorPtr; // Author of the Book

cout << "Destroying Author: " << name << endl;

shared_ptr< Book > bookPtr = weakBookPtr.lock()

cpphtp9_24_CPP11.fm Page 9 Saturday, May 18, 2013 2:10 PM

24-10 Chapter 24 C++11: Additional Features

Figure 24.8 defines a main function that demonstrates the memory leak caused by the
circular reference between classes Author and Book. Lines 12–13 create shared_ptrs to an
instance of each class. The weak_ptr data members are set in lines 16–17. Lines 20–21 set
the shared_ptr data members for each class. The instances of classes Author and Book now

26 // show the reference count increase and print the Book's title
27
28
29
30
31 } // end if
32 else // weakBookPtr points to NULL
33 cout << "This Author has no Book." << endl;
34 } // end of printBookTitle

1 // Fig. 24.7: Book.cpp
2 // Book member-function definitions.
3 #include <iostream>
4 #include <string>
5
6 #include "Author.h"
7 #include "Book.h"
8
9 using namespace std;

10
11 Book::Book(const string &bookTitle) : title(bookTitle)
12 {
13 }
14
15 Book::~Book()
16 {
17
18 } // end of destructor
19
20 // print the name of this Book's Author
21 void Book::printAuthorName()
22 {
23 // if weakAuthorPtr.lock() returns a non-empty shared_ptr
24 if ()
25 {
26 // show the reference count increase and print the Author's name
27
28
29
30
31 } // end if
32 else // weakAuthorPtr points to NULL
33 cout << "This Book has no Author." << endl;
34 } // end of printAuthorName

Fig. 24.7 | Book member-function definitions.

Fig. 24.6 | Author member-function definitions. (Part 2 of 2.)

cout << "Reference count for Book " << bookPtr->title
 << " is " << bookPtr.use_count() << "." << endl;
cout << "Author " << name << " wrote the book " << bookPtr->title
 << "\n" << endl;

#include <memory>

cout << "Destroying Book: " << title << endl;

shared_ptr< Author > authorPtr = weakAuthorPtr.lock()

cout << "Reference count for Author " << authorPtr->name
 << " is " << authorPtr.use_count() << "." << endl;
cout << "The book " << title << " was written by "
 << authorPtr->name << "\n" << endl;

cpphtp9_24_CPP11.fm Page 10 Saturday, May 18, 2013 2:10 PM

24.2 Smart Pointers 24-11

reference each other. We then print the reference count for the shared_ptrs to show that
each instance is referenced by two shared_ptrs (lines 24–27), the ones we create in the
main function and the data member of each instance. Remember that weak_ptrs don’t
affect the reference count. Then we call each class’s member function to print the informa-
tion stored in the weak_ptr data member (lines 32–33). The functions also display the fact
that another shared_ptr was created during the function call. Finally, we print the refer-
ence counts again to show that the additional shared_ptrs created in the printAuthor-
Name and printBookTitle member functions are destroyed when the functions finish.

1 // Fig. 24.8: fig24_08.cpp
2 // Demonstrate use of weak_ptr.
3 #include <iostream>
4
5 #include "Author.h"
6 #include "Book.h"
7 using namespace std;
8
9 int main()

10 {
11 // create a Book and an Author
12
13
14
15 // reference the Book and Author to each other
16
17
18
19 // set the shared_ptr data members to create the memory leak
20
21
22
23 // reference count for bookPtr and authorPtr is two
24 cout << "Reference count for Book " << bookPtr->title << " is "
25 << bookPtr.use_count() << endl;
26 cout << "Reference count for Author " << authorPtr->name << " is "
27 << authorPtr.use_count() << "\n" << endl;
28
29 // access the cross references to print the data they point to
30 cout << "\nAccess the Author's name and the Book's title through "
31 << "weak_ptrs." << endl;
32
33
34
35 // reference count for each shared_ptr is two
36 cout << "Reference count for Book " << bookPtr->title << " is "
37 << bookPtr.use_count() << endl;
38 cout << "Reference count for Author " << authorPtr->name << " is "
39 << authorPtr.use_count() << "\n" << endl;
40
41 // the shared_ptrs go out of scope, the Book and Author are destroyed
42 cout << "The shared_ptrs are going out of scope." << endl;
43 } // end of main

Fig. 24.8 | shared_ptrs cause a memory leak in circularly referential data. (Part 1 of 2.)

#include <memory>

shared_ptr< Book > bookPtr(new Book("C++ How to Program"));
shared_ptr< Author > authorPtr(new Author("Deitel & Deitel"));

bookPtr->weakAuthorPtr = authorPtr;
authorPtr->weakBookPtr = bookPtr;

bookPtr->sharedAuthorPtr = authorPtr;
authorPtr->sharedBookPtr = bookPtr;

bookPtr->printAuthorName();
authorPtr->printBookTitle();

cpphtp9_24_CPP11.fm Page 11 Saturday, May 18, 2013 2:10 PM

24-12 Chapter 24 C++11: Additional Features

Memory Leak
At the end of main, the shared_ptrs to the instances of Author and Book we created go out
of scope and are destroyed. Notice that the output doesn’t show the destructors for classes
Author and Book. The program has a memory leak—the instances of Author and Book aren’t
destroyed because of the shared_ptr data members. When bookPtr is destroyed at the end
of the main function, the reference count for the instance of class Book becomes one—the
instance of Author still has a shared_ptr to the instance of Book, so it isn’t deleted. When
authorPtr goes out of scope and is destroyed, the reference count for the instance of class
Author also becomes one—the instance of Book still has a shared_ptr to the instance of Au-
thor. Neither instance is deleted because the reference count for each is still one.

Fixing the Memory Leak
Now, comment out lines 20–21 by placing // at the beginning of each line. This prevents
the code from setting the shared_ptr data members for classes Author and Book. Recom-
pile the code and run the program again. Figure 24.9 shows the output. Notice that the
initial reference count for each instance is now 1 instead of 2 because we don’t set the
shared_ptr data members. The last two lines of the output show that the instances of
classes Author and Book were destroyed at the end of the main function. We eliminated
the memory leak by using the weak_ptr data members rather than the shared_ptr data
members. The weak_ptrs don’t affect the reference count but still allow us to access the
resource when we need it by creating a temporary shared_ptr to the resource. When the
shared_ptrs we created in main are destroyed, the reference counts become 0 and the in-
stances of classes Author and Book are deleted properly.

Reference count for Book C++ How to Program is 2
Reference count for Author Deitel & Deitel is 2

Access the Author's name and the Book's title through weak_ptrs.
Reference count for Author Deitel & Deitel is 3.
The book C++ How to Program was written by Deitel & Deitel

Reference count for Book C++ How to Program is 3.
Author Deitel & Deitel wrote the book C++ How to Program

Reference count for Book C++ How to Program is 2
Reference count for Author Deitel & Deitel is 2

The shared_ptrs are going out of scope.

Reference count for Book C++ How to Program is 1
Reference count for Author Deitel & Deitel is 1

Access the Author's name and the Book's title through weak_ptrs.
Reference count for Author Deitel & Deitel is 2.
The book C++ How to Program was written by Deitel & Deitel

Fig. 24.9 | weak_ptrs used to prevent a memory leak in circularly referential data. (Part 1 of 2.)

Fig. 24.8 | shared_ptrs cause a memory leak in circularly referential data. (Part 2 of 2.)

cpphtp9_24_CPP11.fm Page 12 Saturday, May 18, 2013 2:10 PM

24.3 Multithreading 24-13

24.3 Multithreading
Multithreading is one of the most significant updates in the C++11 standard. Though
multithreading has been around for decades, interest in it is rising quickly due to the pro-
liferation of multicore systems—even today’s smartphones and tablets are typically multi-
core. The most common level of multicore processor today is dual core, though quad core
processors are becoming popular. The number of cores will continue to grow. In multicore
systems, the hardware can put multiple processors to work simultaneously on different parts
of your task, thereby enabling the program to complete faster. To take full advantage of
multicore architecture you need to write multithreaded applications. When a program
splits tasks into separate threads, a multicore system can run those threads in parallel. This
section introduces basic multithreading features that enable you to execute functions in
separate threads. At the end of the section we provide links to online references where you
can learn more about C++11 multithreading.

24.3.1 Multithreading Headers in C++11
Previously, C++ multithreading libraries were non-standard, platform-specific extensions.
You’ll often want your code to be portable across platforms. This is a key benefit of stan-
dardized multithreading. C++11 provides several headers that declare the new multi-
threading capabilities for writing more portable multithreaded C++ code:

• <thread> header—Contains class thread for manually creating and starting
threads, and functions yield, get_id, sleep_for and sleep_until.

• <mutex> header—Contains classes and class templates for ensuring mutually ex-
lusive access to resources shared among threads in an application—also known as
thread synchronization.

• <condition_variable> header—Contains classes, a function and an enum that
are used together with facilities in header <mutex> to implement thread synchro-
nization. In particular, condition variables can be used to make threads wait for a
specific condition in a program, then to notify the waiting threads when that con-
dition is satisfied.

• <future> header—Contains class templates, a function template and enums that
enable you specify functions to execute in separate threads and to receive the re-
sults of those functions when the threads complete.

For the examples in this section, we used Microsoft’s Visual C++ and Apple’s Xcode
LLVM compilers. GNU’s g++ compiler provides partial C++11 multithreading support.

Reference count for Book C++ How to Program is 2.
Author Deitel & Deitel wrote the book C++ How to Program

Reference count for Book C++ How to Program is 1
Reference count for Author Deitel & Deitel is 1

The shared_ptrs are going out of scope.

Fig. 24.9 | weak_ptrs used to prevent a memory leak in circularly referential data. (Part 2 of 2.)

Destroying Author: Deitel & Deitel
Destroying Book: C++ How to Program

cpphtp9_24_CPP11.fm Page 13 Saturday, May 18, 2013 2:10 PM

24-14 Chapter 24 C++11: Additional Features

24.3.2 Running Multithreaded Programs
When you run any program on a modern computer system, your program’s tasks compete
for the attention of the processor(s) with the operating system, other programs and other
activities that the operating system is running on your behalf. All kinds of tasks are typi-
cally running in the background on your system. When you execute the examples in this
section, the time to perform each calculation will vary based on your computer’s processor
speed, number of processor cores and what’s running on your computer. It’s not unlike a
drive to the supermarket. The time it takes you to drive there can vary based on traffic con-
ditions, weather and other factors. Some days the drive might take 10 minutes, but during
rush hour or bad weather it could take longer. The same is true for executing applications
on computer systems.

There’s also overhead inherent in multithreading itself. Simply dividing a task into
two threads and running it on a dual core system does not run it twice as fast, though it
will typically run faster than performing the thread’s tasks in sequence on one core. As
you’ll see, executing a multithreaded application on a single-core processor can actually
take longer than simply performing the thread’s tasks in sequence.

24.3.3 Overview of This Section’s Examples
To provide a convincing demonstration of multithreading on a multicore system, this sec-
tion presents two programs:

• The first performs two compute-intensive calculations sequentially (Fig. 24.10).

• The second executes the same compute-intensive calculations in parallel threads
(Fig. 24.11).

We executed each program on single-core and dual-core Windows 7 computers to dem-
onstrate the performance of each program in each scenario. We used features of the
<ctime> header to time each calculation and the total calculation time in both programs.
The program outputs show the time improvements when the multithreaded program ex-
ecutes on a multicore system.

24.3.4 Example: Sequential Execution of Two Compute-Intensive Tasks
Figure 24.10 uses the recursive fibonacci function (lines 42–53) that we introduced in
Section 6.21. Recall that, for larger Fibonacci values, the recursive implementation can re-
quire significant computation time. The example sequentially performs the calculations
fibonacci(45) (line 19) and fibonacci(44) (line 29). Before and after each fibonacci
call, we capture the time so that we can calculate the total time required for the calculation.
We also use this to calculate the total time required for both calculations. Lines 24, 34 and
38 use function difftime (from header <ctime>) to calculate the number of seconds be-
tween two times.

1 // Fig. 24.10: fibonacci.cpp
2 // Fibonacci calculations performed sequentially
3 #include <iostream>
4 #include <iomanip>

Fig. 24.10 | Fibonacci calculations performed sequentially. (Part 1 of 3.)

cpphtp9_24_CPP11.fm Page 14 Saturday, May 18, 2013 2:10 PM

24.3 Multithreading 24-15

5 #include <ctime>
6 using namespace std;
7
8 unsigned long long int fibonacci(unsigned int n); // function prototype
9

10 // function main begins program execution
11 int main(void)
12 {
13 cout << fixed << setprecision(6);
14 cout << "Sequential calls to fibonacci(45) and fibonacci(44)" << endl;
15
16 // calculate fibonacci values for numbers 45 (line 19) and 44 (line 29)
17 cout << "Calculating fibonacci(45)" << endl;
18 time_t startTime1 = time(nullptr);
19 unsigned long long int result1 = ;
20 time_t endTime1 = time(nullptr);
21
22 cout << "fibonacci(45) = " << result1 << endl;
23 cout << "Calculation time = "
24 << difftime(endTime1, startTime1) / 60.0
25 << " minutes\n" << endl;
26
27 cout << "Calculating fibonacci(44)" << endl;
28 time_t startTime2 = time(nullptr);
29 unsigned long long int result2 = ;
30 time_t endTime2 = time(nullptr);
31
32 cout << "fibonacci(44) = " << result2 << endl;
33 cout << "Calculation time = "
34 << difftime(endTime2, startTime2) / 60.0
35 << " minutes\n" << endl;
36
37 cout << "Total calculation time = "
38 << difftime(endTime2, startTime1) / 60.0 << " minutes" << endl;
39 } // end main
40
41 // Recursively calculates fibonacci numbers
42 unsigned long long int fibonacci(unsigned int n)
43 {
44 // base case
45 if (0 == n || 1 == n)
46 {
47 return n;
48 } // end if
49 else // recursive step
50 {
51 return fibonacci(n - 1) + fibonacci(n - 2);
52 } // end else
53 } // end function fibonacci

Fig. 24.10 | Fibonacci calculations performed sequentially. (Part 2 of 3.)

fibonacci(45)

fibonacci(44)

cpphtp9_24_CPP11.fm Page 15 Saturday, May 18, 2013 2:10 PM

24-16 Chapter 24 C++11: Additional Features

The first output shows the results of executing the program on a dual-core Windows
7 computer. The second and third outputs show the results of executing the program on
a single-core Windows 7 computer on which the program always took longer to execute
(in our testing), because the processor was being shared between this program and all the
others that happened to be executing on the computer at the same time.

24.3.5 Example: Multithreaded Execution of Two Compute-Intensive
Tasks
Figure 24.11 also uses the recursive fibonacci function, but executes each call to fibonac-
ci in a separate thread. The first two outputs show the multithreaded Fibonacci example
executing on a dual-core computer. Though execution times varied, the total time to per-

a) Output on a Dual Core Windows 7 Computer

Sequential calls to fibonacci(45) and fibonacci(44)
Calculating fibonacci(45)
fibonacci(45) = 1134903170
Calculation time = 1.416667 minutes

Calculating fibonacci(44)
fibonacci(44) = 701408733
Calculation time = 0.866667 minutes

Total calculation time = 2.283333 minutes

b) Output on a Single Core Windows 7 Computer

Sequential calls to fibonacci(45) and fibonacci(44)
Calculating fibonacci(45)
fibonacci(45) = 1134903170
Calculation time = 1.500000 minutes

Calculating fibonacci(44)
fibonacci(44) = 701408733
Calculation time = 0.916667 minutes

Total calculation time = 2.416667 minutes

c) Output on a Single Core Windows 7 Computer

Sequential calls to fibonacci(45) and fibonacci(44)
Calculating fibonacci(45)
fibonacci(45) = 1134903170
Calculation time = 1.466667 minutes

Calculating fibonacci(44)
fibonacci(44) = 701408733
Calculation time = 0.900000 minutes

Total calculation time = 2.366667 minutes

Fig. 24.10 | Fibonacci calculations performed sequentially. (Part 3 of 3.)

cpphtp9_24_CPP11.fm Page 16 Saturday, May 18, 2013 2:10 PM

24.3 Multithreading 24-17

form both Fibonacci calculations (in our tests) was always less than sequential execution in
Fig. 24.10. The last two outputs show the example executing on a single-core computer.
Again, times varied for each execution, but the total time was more than the sequential ex-
ecution due to the overhead of sharing one processor among all the program’s threads and
the other programs executing on the computer at the same time.

1 // Fig. 24.11: ThreadedFibonacci.cpp
2 // Fibonacci calculations performed in separate threads
3 #include <iostream>
4 #include <iomanip>
5 #include <future>
6 #include <ctime>
7 using namespace std;
8
9 // class to represent the results

10 class ThreadData
11 {
12 public:
13 time_t startTime; // time thread starts processing
14 time_t endTime; // time thread finishes processing
15 }; // end class ThreadData
16
17 unsigned long long int fibonacci(unsigned int n); // function prototype
18 ThreadData startFibonacci(unsigned int n); // function prototype
19
20 int main()
21 {
22 cout << fixed << setprecision(6);
23 cout << "Calculating fibonacci(45) and fibonacci(44) "
24 << "in separate threads" << endl;
25
26 cout << "Starting thread to calculate fibonacci(45)" << endl;
27
28 cout << "Starting thread to calculate fibonacci(44)" << endl;
29
30
31
32
33
34
35 // determine time that first thread started
36 time_t startTime = (result1.startTime < result2.startTime) ?
37 result1.startTime : result2.startTime;
38
39 // determine time that last thread terminated
40 time_t endTime = (result1.endTime > result2.endTime) ?
41 result1.endTime : result2.endTime;
42
43 // display total time for calculations
44 cout << "Total calculation time = "
45 << difftime(endTime, startTime) / 60.0 << " minutes" << endl;
46 } // end main

Fig. 24.11 | Fibonacci calculations performed in separate threads. (Part 1 of 3.)

auto futureResult1 = async(launch::async, startFibonacci, 45);

auto futureResult2 = async(launch::async, startFibonacci, 44);

// wait for results from each thread
ThreadData result1 = futureResult1.get();
ThreadData result2 = futureResult2.get();

cpphtp9_24_CPP11.fm Page 17 Saturday, May 18, 2013 2:10 PM

24-18 Chapter 24 C++11: Additional Features

47
48 // executes function fibonacci asynchronously
49 ThreadData startFibonacci(unsigned int n)
50 {
51 // create a ThreadData object to store times
52 ThreadData result = { 0, 0 };
53
54 cout << "Calculating fibonacci(" << n << ")" << endl;
55 result.startTime = time(nullptr); // time before calculation
56 auto fibonacciValue = fibonacci(n);
57 result.endTime = time(nullptr); // time after calculation
58
59 // display fibonacci calculation result and total calculation time
60 cout << "fibonacci(" << n << ") = " << fibonacciValue << endl;
61 cout << "Calculation time = "
62 << difftime(result.endTime, result.startTime) / 60.0
63 << " minutes\n" << endl;
64 return result;
65 } // end function startFibonacci
66
67 // Recursively calculates fibonacci numbers
68 unsigned long long int fibonacci(unsigned int n)
69 {
70 // base case
71 if (0 == n || 1 == n)
72 {
73 return n;
74 } // end if
75 else // recursive step
76 {
77 return fibonacci(n - 1) + fibonacci(n - 2);
78 } // end else
79 } // end function fibonacci

a) Output on a Dual Core Windows 7 Computer

Calculating fibonacci(45) and fibonacci(44) in separate threads
Starting thread to calculate fibonacci(45)
Starting thread to calculate fibonacci(44)
Calculating fibonacci(45)
Calculating fibonacci(44)
fibonacci(44) = 701408733
Calculation time = 1.050000 minutes

fibonacci(45) = 1134903170
Calculation time = 1.616667 minutes

Total calculation time = 1.616667 minutes

Fig. 24.11 | Fibonacci calculations performed in separate threads. (Part 2 of 3.)

cpphtp9_24_CPP11.fm Page 18 Saturday, May 18, 2013 2:10 PM

24.3 Multithreading 24-19

Class ThreadData
The function that each thread executes in this example returns an object of class Thread-
Data (lines 10–15) containing two time_t members. We use these to store the system time
before and after each thread’s call to the recursive function fibonacci.

Creating and Executing a Task: Function template async
Lines 26–29 create two threads by calling function template async (lines 27 and 29),
which has two overloaded versions. The version used here takes three arguments:

b) Output on a Dual Core Windows 7 Computer

Calculating fibonacci(45) and fibonacci(44) in separate threads
Starting thread to calculate fibonacci(45)
Starting thread to calculate fibonacci(44)
Calculating fibonacci(45)
Calculating fibonacci(44)
fibonacci(44) = 701408733
Calculation time = 1.016667 minutes

fibonacci(45) = 1134903170
Calculation time = 1.583333 minutes

Total calculation time = 1.583333 minutes

c) Output on a Single Core Windows 7 Computer

Calculating fibonacci(45) and fibonacci(44) in separate threads
Starting thread to calculate fibonacci(45)
Starting thread to calculate fibonacci(44)
Calculating fibonacci(45)
Calculating fibonacci(44)
fibonacci(44) = 701408733
Calculation time = 2.333333 minutes

fibonacci(45) = 1134903170
Calculation time = 2.966667 minutes

Total calculation time = 2.966667 minutes

d) Output on a Single Core Windows 7 Computer

Calculating fibonacci(45) and fibonacci(44) in separate threads
Starting thread to calculate fibonacci(45)
Starting thread to calculate fibonacci(44)
Calculating fibonacci(45)
Calculating fibonacci(44)
fibonacci(44) = 701408733
Calculation time = 2.233333 minutes

fibonacci(45) = 1134903170
Calculation time = 2.850000 minutes

Total calculation time = 2.850000 minutes

Fig. 24.11 | Fibonacci calculations performed in separate threads. (Part 3 of 3.)

cpphtp9_24_CPP11.fm Page 19 Saturday, May 18, 2013 2:10 PM

24-20 Chapter 24 C++11: Additional Features

• Thread launch policy: A value from the launch enum—either launch::async,
launch::deferred or both separated by a bitwise OR (|) operator. The value
launch::async indicates that the function specified in the second argument should
execute in a separate thread. The value launch::deferred indicates that the func-
tion specified in the second argument should execute in the same thread when the
program uses the future object returned by function template async to get the re-
sult.

• Function pointer or function object to execute: This specifies the task to perform in
the thread.

• Arguments: The third argument can actually be any number of additional argu-
ments that are passed to the function or function object specified by the second
argument. In this example, we pass one additional argument—the unsigned int
that should in turn be passed from function startFibonacci to function fibo-
nacci to perform the calculation.

The other version of async does not take the launch policy argument. Instead, it deter-
mines for you whether to execute synchronously or asynchronously. If async cannot create
the thread, a system_error exception occurs. If the thread is created successfully, the func-
tion specified as the second argument begins executing in the new thread.

Joining the Threads: Class Template future
Function async returns an object of class template future that you can use when the thread
completes execution to obtain data returned by the function that async executes—in our
case, a ThreadData object. The type future<ThreadData> is inferred by the compiler from
the return type of function startFibonacci—the second argument to async.

To ensure that the program does not terminate until the threads terminate and to
receive the results from each thread, lines 32–33 call each future’s get member function.
This causes the program to wait until the corresponding threads complete execution—
known as joining the threads—before executing the remaining code in main. Function get
implicitly calls the underlying thread’s join member function, which causes the calling
thread to wait until the thead on which join was called completes. When the thread com-
pletes, get returns whatever the function executed by async returns—again, a ThreadData
object in this example.

Function startFibonacci
Function startFibonacci (lines 49–65) specifies the task to perform—in this case, to call
fibonacci (line 56) to recursively perform a calculation, to time the calculation (lines 55
and 57, to display the calculation’s result (line 60) and to display the time the calculation
took (lines 61–63). Each thread in this example executes until startFibonacci returns—
at which point the thread terminates. When threads terminate, function main—which was
waiting for the threads to complete due to lines 32–33—can complete its execution.

Web Resources for Multithreading
For more information on C++11 multithreading see Section 30 of the C++ standard doc-
ument. In addition, see the following online articles and blog posts:
http://solarianprogrammer.com/2011/12/16/cpp-11-thread-tutorial/

Tutorial: “C++11 Multithreading.”

cpphtp9_24_CPP11.fm Page 20 Saturday, May 18, 2013 2:10 PM

24.4 noexcept Exception Specifications and the noexcept Operator 24-21

http://solarianprogrammer.com/2012/02/27/cpp-11-thread-tutorial-part-2/

Tutorial: “C++11 Multithreading, Part 2.”
http://solarianprogrammer.com/2011/12/16/cpp-11-thread-tutorial/

Tutorial: “C++11 Multithreading, Part 3."
http://www.informit.com/articles/article.aspx?p=1750198

Article: “What You Need to Know About C++11 Multicore Multithreading,” by Stephen B. Morris.
http://www.justsoftwaresolutions.co.uk/threading/multithreading-in-c++0x-part-
8-futures-and-promises.html

Blog: “Multithreading in C++0x Part 8: Futures, Promises and Asynchronous Function Calls.”
http://marknelson.us/2012/05/23/c11-threading-made-easy/

Blog: “C++11—Threading Made Easy.”
http://dclong.github.com/en/2012/06/cpp11-concurrency-tips/

Blog: “Tips for Multithreading/Concurrency Programming in C++11.”
http://bartoszmilewski.com/category/multithreading/

Blog: “Multithreading: The Future of C++ Concurrency and Parallelism.”

24.4 noexcept Exception Specifications and the
noexcept Operator
Prior to C++11, you could place an exception specification after the function definition’s
parameter list to specify the types of exceptions potentially thrown by that function. This
specification consisted of the throw keyword followed by a list of types in parentheses.
This feature is now deprecated and was not supported by many C++ compilers previously.

noexcept Specification
In C++11, you can now declare simply whether or not a function throws any exceptions.
If the compiler knows that a function does not throw any exceptions, it can potentially per-
form additional optimizations. In the following function

the noexcept keyword to the right of the function’s parameter list indicates that this func-
tion does not throw exceptions. The noexcept specification can optionally be followed by
parentheses containing a constant expression that evaluates to true or false. In the pre-
ceding function, noexcept is equivalent to noexcept(true); if the expression’s value is
false, the function might throw exceptions. If an exception is thrown from a function
that is declared noexcept or noexcept(true), the program terminates.

noexcept Operator
In function templates, the expression in a noexcept specification typically uses the opera-
tor noexcept, which has the form

and returns false if the expression can throw an exception. This enables the compiler to
generate function template specializations with the specification noexcept(true) for
some types and noexcept(false) for others. Typically, the expression is a function call that

int square(int value)
{

 return value * value;
}

noexcept(expression)

noexcept

cpphtp9_24_CPP11.fm Page 21 Saturday, May 18, 2013 2:10 PM

24-22 Chapter 24 C++11: Additional Features

uses values of the type(s) for which the function template was instantiated. The noexcept
specification and noexcept operator are not yet supported in Visual C++.

Web Resources for noexcept
http://en.cppreference.com/w/cpp/language/noexcept
http://en.cppreference.com/w/cpp/language/noexcept_spec

The C++11 noexcept operator and noexcept specification pages on cppreference.com.
http://akrzemi1.wordpress.com/2011/06/10/using-noexcept/

Blog: “Using noexcept,” by Andrzej Krzemienski. Includes sample code.
http://stackoverflow.com/questions/12833241/difference-between-c03-throw-
specifier-c11-noexcept

Stackoverflow discussion: “Difference between C++03 throw() specifier C++11 noexcept.”
http://stackoverflow.com/questions/2762078/why-is-c0xs-noexcept-checked-
dynamically

Stackoverflow discussion: “Why is C++0x’s noexcept checked dynamically?”
http://stackoverflow.com/questions/10787766/when-should-i-really-use-noexcept

Stackoverflow discussion: “When Should I Really Use noexcept?”
http://cpptruths.blogspot.com/2011/09/tale-of-noexcept-swap-for-user-
defined.html

Blog: “A tale of noexcept swap for user-defined classes in C++11,” by Sumant Tambe. Discusses how
C++ is phasing out throw in favor of the new noexcept.

24.5 Move Semantics
There are many cases in which C++ makes copies of objects. For example, each time you
pass an object to a function by value or return an object from a function by value a copy of
the object is made. There are many cases in which the object being copied is about to be
destroyed, such as a temporary object that was returned from a function by value or a local
object that’s going out of scope. In such cases, it’s more efficient to move the contents of
the object that’s about to be destroyed into the destination object, thus avoiding any copy-
ing overhead.

For example, consider a function that creates a local string object, then returns a
copy of that object:

The string created in the return statement is a temporary string that will be copied and
passed back to the caller. In the following statement:

the temporary string containing "Hello Sam" is copied into the string variable result,
then the temporary string containing "Hello Sam" is destroyed. Since the temporary object
is being destroyed, it would be more efficient to move the temporary object’s resources into
the string result.

C++11 introduces rvalue references and move semantics to help eliminate unnecessary
copying of objects in many cases. In this section, we use these new capabilities in the con-
text of our Array case study from Chapter 10.

string createString(string &name)
{
 return string("Hello ") + name;
} // end function create string

string result = createString("Sam");

cpphtp9_24_CPP11.fm Page 22 Saturday, May 18, 2013 2:10 PM

24.5 Move Semantics 24-23

The Rule of Three is Now the Rule of Five
Recall from Chapter 10 that a copy constructor, a destructor and an overloaded assignment
operator are usually provided as a group for any class that uses dynamically allocated mem-
ory. This is sometimes referred to as the Rule of Three. With the addition of move semantics
in C++11, you should also provide a move constructor and a move assignment operator. For
this reason, the Rule of Three is now known as the Rule of Five.

24.5.1 rvalue references
An rvalue typically represents a temporary object, such as the result of a calculation, an ob-
ject that’s implicitly created or an object that’s returned from a function by value. C++11’s
new rvalue reference type allows a reference to refer to an rvalue rather than an lvalue. An
rvalue reference is declared as T&& (where T is the type of the object being referenced) to
distinguish it from a normal reference T& (called an lvalue reference). An rvalue reference
is used to implement move semantics—instead of being copied, the object’s state (i.e., its
content) is moved, leaving the original in a state that can be properly destructed. For ex-
ample, prior to C++11 the following code created a temporary string object and passed it
to push_back, which then copied it into the vector:

As of C++11, member function push_back is now overloaded with a version that takes an
rvalue reference. This allows the preceding call to push_back to take the storage allocated
for the temporary string and reuse it directly for the new element in the vector. The tem-
porary string will be destroyed when the function returns, so there’s no need for it to keep
its content.

Web Resources for rvalue References
http://thbecker.net/articles/rvalue_references/section_01.html

Article: “C++ rvalue References Explained,” by Thomas Becker. Discusses move semantics, rvalue
references, forcing move semantics, are rvalue references an rvalue, compiler optimization, perfect
forwarding the problem and solution, rvalue references and exceptions and the implicit move.
http://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-
c++11.html

Article: “Move Semantics and rvalue References in C++11,” by Alex Allain. Discusses rvalues and
lvalues, detecting temporary objects with rvalue references, the move constructor and move assign-
ment operator, the std::move, returning an explicit rvalue-reference from a function, move seman-
tics and the standard library and move semantics and rvalue reference compiler support.
http://www.codesynthesis.com/~boris/blog/2012/03/06/rvalue-reference-pitfalls/

Blog: “Rvalue Reference Pitfalls.”
http://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Scott-Meyers-
Universal-References-in-Cpp11

Video: “C++ and Beyond 2012: Scott Myers-Universal References in C++11.” A 90-minute presen-
tation.
http://eli.thegreenplace.net/2011/12/15/understanding-lvalues-and-rvalues-in-c-
and-c/

Blog: “Understanding lvalues and rvalues in C and C++,” by Eli Bendersky. Discusses a simple def-
inition, basic examples, modifiable lvalues, conversions between lvalues and rvalues, qualified rval-
ues, and rvalue references.

vector< string > myVector;
myVector.push_back("message");

cpphtp9_24_CPP11.fm Page 23 Saturday, May 18, 2013 2:10 PM

24-24 Chapter 24 C++11: Additional Features

http://en.cppreference.com/w/cpp/utility/move

Reference: “std::move.”
http://blogs.msdn.com/b/vcblog/archive/2009/02/03/rvalue-references-c-0x-
features-in-vc10-part-2.aspx

Blog: “Rvalue References: C++0x Features in VC10, Part 2,” from the Visual C++ Team. Discusses
lvalues and rvalues, the copying problem, rvalue reference initialization, rvalue references overload
resolution, move semantics, moving from lvalues, movable members, the forwarding problem, per-
fect forwarding, template argument deduction and reference collapsing, the past and the future.
http://www.slideshare.net/goldshtn/c11-12147261

Slide Presentation: “C++11 Standard,” from BrightSource. A brief presentation on the C++11 stan-
dard, including lambda functions, rvalue references, automatic variables, and more.
http://www.codesynthesis.com/~boris/blog/2008/11/24/rvalue-reference-basics/

Blog: “Rvalue References: The Basics.”
http://www.codesynthesis.com/~boris/blog/2012/03/14/rvalue-reference-pitfalls-
update/

Blog: “Rvalue Pitfalls, An Update.”
http://www.lapthorn.net/archives/800

Blog: “C++11 Part 3: Rvalue References.”

24.5.2 Move-Enabling Class Array
We’ll now update Section 10.10’s Array class with a move constructor and a move assign-
ment operator and demonstrate when they are used. Figures 24.12–24.13 show the new
implementation of our Array class. In Fig. 24.12, we added prototypes for the move con-
structor (line 16) and move assignment operator (line 21). Figure 24.13 contains the imple-
mentations of these new member functions (in lines 36–45 and 84–100, respectively),
which we discuss momentarily. We added output statements to the constructors, assign-
ment operators and destructor to show in the program output (Fig. 24.14) when each is
called. We also modified the overloaded << operator (Fig. 24.13, lines 149–157) to display
an Array’s elements separated by one space each. The other features of class Array are
identical to Section 10.10’s Array class, so we do not discuss them here.

1 // Fig. 24.12: Array.h
2 // Array class header.
3 #ifndef ARRAY_H
4 #define ARRAY_H
5
6 #include <iostream>
7
8 class Array
9 {

10 friend std::ostream &operator<<(std::ostream &, const Array &);
11 friend std::istream &operator>>(std::istream &, Array &);
12
13 public:
14 explicit Array(size_t = 10); // default constructor
15 Array(const Array &); // copy constructor
16

Fig. 24.12 | Array class header. (Part 1 of 2.)

Array(Array &&) noexcept; // move constructor

cpphtp9_24_CPP11.fm Page 24 Saturday, May 18, 2013 2:10 PM

24.5 Move Semantics 24-25

17 ~Array(); // destructor
18 size_t getSize() const; // return size
19
20 Array &operator=(const Array &); // copy assignment operator
21
22 bool operator==(const Array &) const; // equality operator
23
24 // inequality operator; returns opposite of == operator
25 bool operator!=(const Array &right) const
26 {
27 return ! (*this == right); // invokes Array::operator==
28 } // end function operator!=
29
30 // subscript operator for non-const objects returns modifiable lvalue
31 int &operator[](size_t);
32
33 // subscript operator for const objects returns rvalue
34 int operator[](size_t) const;
35 private:
36 size_t size; // pointer-based array size
37 int *ptr; // pointer to first element of pointer-based array
38 }; // end class Array
39
40 #endif

1 // Fig. 24.13: Array.cpp
2 // Array class implementation.
3 #include <iostream>
4 #include <iomanip>
5 #include <stdexcept>
6 #include <utility> // contains std::move
7 #include "Array.h" // Array class definition
8
9 using namespace std;

10
11 // default constructor for class Array (default size 10)
12 Array::Array(size_t arraySize)
13 : size(arraySize),
14 ptr(new int[size])
15 {
16 cout << "Array(int) constructor called" << endl;
17
18 for (size_t i = 0; i < size; ++i)
19 ptr[i] = 0; // set pointer-based array element
20 } // end Array default constructor
21

Fig. 24.13 | Array class implementation. (Part 1 of 4.)

Fig. 24.12 | Array class header. (Part 2 of 2.)

Array &operator=(Array &&) noexcept; // move assignment operator

cpphtp9_24_CPP11.fm Page 25 Saturday, May 18, 2013 2:10 PM

24-26 Chapter 24 C++11: Additional Features

22 // copy constructor for class Array;
23 // must receive a reference to an Array
24 Array::Array(const Array &arrayToCopy)
25 : size(arrayToCopy.size),
26 ptr(new int[size])
27 {
28 cout << "Array copy constructor called" << endl;
29
30 for (size_t i = 0; i < size; ++i)
31 ptr[i] = arrayToCopy.ptr[i]; // copy into object
32 } // end Array copy constructor
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 // destructor for class Array
48 Array::~Array()
49 {
50 cout << "Array destructor called" << endl;
51 delete [] ptr; // release pointer-based array space
52 } // end destructor
53
54 // return number of elements of Array
55 size_t Array::getSize() const
56 {
57 return size; // number of elements in Array
58 } // end function getSize
59
60 // copy assignment operator
61 Array &Array::operator=(const Array &right)
62 {
63 cout << "Array copy assignment operator called" << endl;
64
65 if (&right != this) // avoid self-assignment
66 {
67 // for Arrays of different sizes, deallocate original
68 // left-side Array, then allocate new left-side Array
69 if (size != right.size)
70 {
71 delete [] ptr; // release space
72 size = right.size; // resize this object
73 ptr = new int[size]; // create space for Array copy
74 } // end inner if

Fig. 24.13 | Array class implementation. (Part 2 of 4.)

// move constructor for class Array;
// must receive an rvalue reference to an Array
Array::Array(Array &&arrayToMove) noexcept
 : size(arrayToMove.size), // move arrayToMove's size to new Array
 ptr(arrayToMove.ptr) // move arrayToMove's ptr to new Array
{
 cout << "Array move constructor called" << endl;

 // indicate that arrayToMove is now empty
 arrayToMove.size = 0;
 arrayToMove.ptr = nullptr;
} // end Array copy constructor

cpphtp9_24_CPP11.fm Page 26 Saturday, May 18, 2013 2:10 PM

24.5 Move Semantics 24-27

75
76 for (size_t i = 0; i < size; ++i)
77 ptr[i] = right.ptr[i]; // copy array into object
78 } // end outer if
79
80 return *this; // enables x = y = z, for example
81 } // end copy assignment operator=
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102 // determine if two Arrays are equal and
103 // return true, otherwise return false
104 bool Array::operator==(const Array &right) const
105 {
106 if (size != right.size)
107 return false; // arrays of different number of elements
108
109 for (size_t i = 0; i < size; ++i)
110 if (ptr[i] != right.ptr[i])
111 return false; // Array contents are not equal
112
113 return true; // Arrays are equal
114 } // end function operator==
115
116 // overloaded subscript operator for non-const Arrays;
117 // reference return creates a modifiable lvalue
118 int &Array::operator[](size_t subscript)
119 {
120 // check for subscript out-of-range error
121 if (subscript >= size)
122 throw out_of_range("Subscript out of range");
123
124 return ptr[subscript]; // reference return
125 } // end function operator[]
126

Fig. 24.13 | Array class implementation. (Part 3 of 4.)

// move assignment operator;
Array &Array::operator=(Array &&arrayToMove) noexcept
{
 cout << "Array move assignment operator called" << endl;

 if (&arrayToMove != this) // avoid self-assignment
 {
 delete [] ptr; // release space
 size = arrayToMove.size; // move arrayToMove's size to new Array
 ptr = arrayToMove.ptr; // move arrayToMove's ptr to new Array

 // indicate that arrayToMove is now empty
 arrayToMove.size = 0;
 arrayToMove.ptr = nullptr;
 } // end outer if

 return *this; // enables x = y = z, for example
} // end move assignment operator=

cpphtp9_24_CPP11.fm Page 27 Saturday, May 18, 2013 2:10 PM

24-28 Chapter 24 C++11: Additional Features

Class Array’s Move Constructor
Lines 36–45 in Fig. 24.13 implement class Array’s move constructor. The parameter is de-
clared to be an rvalue reference (&&) to indicate that the resources of the argument Array
should be moved into the object being constructed. The member initializer list sets the
size and ptr members in the object being constructed to the values of the corresponding
members in the parameter, then the constructor body sets the parameter’s size member
to 0 and ptr member to nullptr to complete the move. The argument object should be
left in a state that allows it to be properly destructed and should no longer refer to the con-
tents that were moved to the new object.

Class Array’s Move Assignment Operator
Lines 84–100 implement class Array’s move assignment operator. As in the move construc-
tor, the move assignment operator’s parameter is an rvalue reference (&&) to indicate that
the resources of the argument Array should be moved. If the operation is not a self assign-
ment (line 88), then line 90 deletes the dynamic memory that was originally allocated to
the object on the left side of the assignment. Next, lines 91–92 move the resources of the

127 // overloaded subscript operator for const Arrays
128 // const reference return creates an rvalue
129 int Array::operator[](size_t subscript) const
130 {
131 // check for subscript out-of-range error
132 if (subscript >= size)
133 throw out_of_range("Subscript out of range");
134
135 return ptr[subscript]; // returns copy of this element
136 } // end function operator[]
137
138 // overloaded input operator for class Array;
139 // inputs values for entire Array
140 istream &operator>>(istream &input, Array &a)
141 {
142 for (size_t i = 0; i < a.size; ++i)
143 input >> a.ptr[i];
144
145 return input; // enables cin >> x >> y;
146 } // end function
147
148 // overloaded output operator for class Array
149 ostream &operator<<(ostream &output, const Array &a)
150 {
151 // output private ptr-based array
152 for (size_t i = 0; i < a.size; ++i)
153 output << a.ptr[i] << " ";
154
155 output << endl;
156 return output; // enables cout << x << y;
157 } // end function operator<<

Fig. 24.13 | Array class implementation. (Part 4 of 4.)

cpphtp9_24_CPP11.fm Page 28 Saturday, May 18, 2013 2:10 PM

24.5 Move Semantics 24-29

right operand into the left operand. Then lines 95–96 set the right operand’s size member
to 0 and ptr member to nullptr to complete the move.

Move Operations Generally Should Be noexcept
In general, move constructors and move assignment operators should not throw exceptions be-
cause they’re simply moving resources, not allocating new ones. For this reason, both the
move constructor and move assignment operator are declared noexcept in their prototypes
and definitions. At the time of this writing, Microsoft Visual C++ did not yet support no-
except. To execute this example in Visual C++, simply remove the noexcept keyword.

Testing Class Array with Move Semantics
The program of Fig. 24.14 demonstrates class Array’s constructors and assignment opera-
tors. In the program’s output, we highlighted key lines with bold text. The program begins
by creating Array integers1 with seven elements that are initialized to 0 by default (line
23). Lines 24–26 display the size and contents of integers1. Next, lines 29–31 read values
into integers1 and display its new values.

1 // Fig. 24.14: fig24_14.cpp
2 // Testing class Array with move semantics.
3 #include <iostream>
4 #include <stdexcept>
5 #include <utility> // for std::move
6 #include "Array.h"
7 using namespace std;
8
9 // function to return an Array by value

10 getArrayByValue()
11 {
12 Array localIntegers(3);
13 localIntegers[0] = 10;
14 localIntegers[1] = 20;
15 localIntegers[2] = 30;
16
17 } // end function getArrayByValue
18
19 int main()
20 {
21 // create 7-element Array integers1 then print its size and contents
22 cout << "Create 7 element Array integers1" << endl;
23 Array integers1(7); // seven-element Array
24 cout << "Size of Array integers1 is "
25 << integers1.getSize()
26 << "\nintegers1 contains: " << integers1;
27
28 // input and print integers1
29 cout << "\nEnter 7 integers:" << endl;
30 cin >> integers1;
31 cout << "\nAfter input integers1 contains: " << integers1;
32

Fig. 24.14 | Testing class Array with move semantics. (Part 1 of 3.)

Array

return localIntegers; // return by value creates an rvalue

cpphtp9_24_CPP11.fm Page 29 Saturday, May 18, 2013 2:10 PM

24-30 Chapter 24 C++11: Additional Features

33 // create Array integers2 using integers1 as an
34 // initializer; print size and contents
35 cout << "\nCreate Array integers2 as a copy of integers1" << endl;
36
37
38 cout << "Size of Array integers2 is "
39 << integers2.getSize()
40 << "\nintegers2 contains: " << integers2;
41
42 // create Array integers3 using the contents of the Array
43 // returned by getArrayByValue; print size and contents
44 cout << "\nCreate Array integers3 and initialize it with the "
45 << "\nrvalue Array returned by getArrayByValue" << endl;
46
47
48 cout << "Size of Array integers3 is "
49 << integers3.getSize()
50 << "\nintegers3 contains: " << integers3;
51
52 // convert integers3 to an rvalue reference with std::move and
53 // use the result to initialize Array integers4
54 cout << "\nCreate Array integers4 and initialize it with the "
55 << "\nrvalue reference returned by std::move" << endl;
56
57
58 cout << "Size of Array integers4 is "
59 << integers4.getSize()
60 << "\nintegers4 contains: " << integers4;
61
62 cout << "After moving integers3 to integers4, size of integers3 is "
63 << integers3.getSize()
64 << "\nintegers3 contains: " << integers3;
65
66 // copy contents of integers4 into integers3
67 cout << "\nUse copy assignment to copy contents "
68 << "of integers4 into integers3" << endl;
69
70
71 cout << "After assigning integers4 to integers3, "
72 << "\nsize of Array integers3 is "
73 << integers3.getSize()
74 << "\nintegers3 contains: " << integers3;
75
76 // move contents of integers4 into integers1
77 cout << "\nUse move assignment to move contents "
78 << "of integers4 into integers1" << endl;
79
80
81 cout << "Size of Array integers1 is "
82 << integers1.getSize()
83 << "\nintegers1 contains: " << integers1;
84

Fig. 24.14 | Testing class Array with move semantics. (Part 2 of 3.)

Array integers2(integers1); // invokes copy constructor

Array integers3(getArrayByValue()); // invokes move constructor

Array integers4(std::move(integers3)); // invokes move constructor

integers3 = integers4; // invokes copy constructor

integers1 = std::move(integers4); // invokes move assignment

cpphtp9_24_CPP11.fm Page 30 Saturday, May 18, 2013 2:10 PM

24.5 Move Semantics 24-31

85 cout << "After moving integers4 to integers1, size of integers4 is "
86 << integers4.getSize()
87 << "\nintegers4 contains: " << integers4;
88 } // end main

Create 7 element Array integers1
Array(int) constructor called
Size of Array integers1 is 7
integers1 contains: 0 0 0 0 0 0 0

Enter 7 integers:
1 2 3 4 5 6 7

After input integers1 contains: 1 2 3 4 5 6 7

Create Array integers2 as a copy of integers1
Array copy constructor called
Size of Array integers2 is 7
integers2 contains: 1 2 3 4 5 6 7

Create Array integers3 and initialize it with the
rvalue Array returned by getArrayByValue
Array(int) constructor called
Array move constructor called
Array destructor called
Size of Array integers3 is 3
integers3 contains: 10 20 30

Create Array integers4 and initialize it with the
rvalue reference returned by std::move
Array move constructor called
Size of Array integers4 is 3
integers4 contains: 10 20 30
After moving integers3 to integers4, size of integers3 is 0
integers3 contains:

Use copy assignment to copy contents of integers4 into integers3
Array copy assignment operator called
After assigning integers4 to integers3,
size of Array integers3 is 3
integers3 contains: 10 20 30

Use move assignment to move contents of integers4 into integers1
Array move assignment operator called
Size of Array integers1 is 3
integers1 contains: 10 20 30
After moving integers4 to integers1, size of integers4 is 0
integers4 contains:
Array destructor called
Array destructor called
Array destructor called
Array destructor called

Fig. 24.14 | Testing class Array with move semantics. (Part 3 of 3.)

cpphtp9_24_CPP11.fm Page 31 Saturday, May 18, 2013 2:10 PM

24-32 Chapter 24 C++11: Additional Features

Creating Array integers2 as a Copy of integers1
Lines 35–40 use class Array’s copy constructor to initialize Array integers2 then display
the size and contents of the new Array. When a class contains both a copy constructor and
a move constructor, the compiler decides which one to use based on the context. Line 36

uses class Array’s copy constructor because integers1 is an lvalue, which cannot be passed
to a constructor or function that receives an rvalue reference without first explicitly con-
verting the lvalue to an rvalue reference first.

Creating Array integers3 and Initializing It With the Array Returned By Function
getArrayByValue
Lines 44–50 use class Array’s move constructor to initialize Array integers3 then display
the size and contents of the new Array. Line 46

calls function getArrayByValue (lines 10–17), which creates an Array then returns it by
value. When you return an object from a function by value, a copy of the object is made.
That copy is an rvalue that exists only until the statement that called the function com-
pletes execution. In this context, the rvalue is more precisely known as an xvalue (expiring
value), because the compiler knows that the object being returned from getArrayByValue
is about to be destroyed. In this case, the compiler invokes class Array’s move constructor to
move the contents of the Array returned by getArrayByValue into the Array being initial-
ized, thus eliminating the overhead of copying the returned object. Similarly, if you were
assigning the result of getArrayByValue to an existing Array object, the move assignment
operator would be called.

Creating Array integers4 and Initializing It With the rvalue Returned By Function
std::move
Lines 54–64 use class Array’s move constructor to initialize Array integers4 then display
the size and contents of the new Array. Line 56

uses the Standard Library function std::move (from header <utility>) to explicitly con-
vert integers3 (an lvalue) to an rvalue reference. This tells the compiler that integers3’s
contents should be moved into integers4 and invokes class Array’s move constructor. It’s
recommended that you use std::move in this manner only if you know the object will nev-
er be used again. For demonstration purposes, we output the size and contents of
integers3 again to show that the move constructor indeed moved integers3’s resources.

Assigning Array integers4 to integers3 with the Copy Assignment Operator
Lines 67–74 use class Array’s copy assignment operator to copy the contents of Array
integers4 into integers3 then display the size and contents integers3. When a class
contains both a copy assignment operator and a move assignment operator, the compiler de-
cides which one to use based on the context. Line 69

Array integers2(integers1); // invokes copy constructor

Array integers3(getArrayByValue()); // invokes move constructor

Array integers4(std::move(integers3)); // invokes move constructor

integers3 = integers4; // invokes copy constructor

cpphtp9_24_CPP11.fm Page 32 Saturday, May 18, 2013 2:10 PM

24.5 Move Semantics 24-33

uses class Array’s copy assignment operator because integers4 is an lvalue, which, as you
just learned, cannot be passed to a constructor or function that receives an rvalue reference
without explicitly converting the lvalue to an rvalue reference first.

Assigning Array integers4 to integers1 with the Move Assignment Operator
Lines 77–87 use class Array’s move assignment operator to move integers4’s contents into
integers1 then display the size and contents of integers1. Line 79

uses the Standard Library function std::move to explicitly convert integers4 (an lvalue)
to an rvalue reference. This tells the compiler that integers4’s resources should be moved
into integers1 and invokes class Array’s move assignment operator. For demonstration
purposes, we output the size and contents of integers4 again to show that the move as-
signment operator indeed moved integers4’s resources.

Copy-and-Swap Assignment Operator Implementation
It’s possible to define a single assignment operator that handles both copy and move assign-
ment by using the so-called copy-and-swap technique. See the following article for an over-
view of copy-and-swap and a typical implementation:

24.5.3 move and move_backward Algorithms
You can use move semantics with ranges of elements stored in containers. The C++ Standard
Library algorithms move and move_backward (from header <algorithm>) work like the
copy and copy_backward algorithms (introduced in Section 15.5.1 and Section 16.3.8, re-
spectively), but move and move_backward move the elements in the specified ranges rather
than copying them.

Web Resources for the move and move_backward Algorithms
http://en.cppreference.com/w/cpp/algorithm/move_backward

Documentation: “Move Backward Algorithm.”
http://www.boost.org/doc/libs/1_51_0/doc/html/move/move_algorithms.html

Blog: “C++ Move Algorithms.”
http://en.cppreference.com/w/cpp/algorithm/move

Documentation: std::move.

24.5.4 emplace Container Member Functions
When working with many of the C++ Standard Library containers that we introduced in
Chapter 15, you can use the new member functions emplace, emplace_front,
emplace_back, emplace_after and emplace_hint to insert objects into containers with-
out invoking any copy or move operations. The emplace member functions contruct new
objects in place in the new container elements.

Web Resources for the emplace Container Member Functions
http://en.cppreference.com/w/cpp/container/vector/emplace

Documentation: std::vector::emplace.

integers1 = std::move(integers4); // invokes move constructor

http://bit.ly/CopyAndSwapCPP

cpphtp9_24_CPP11.fm Page 33 Saturday, May 18, 2013 2:10 PM

24-34 Chapter 24 C++11: Additional Features

http://blog.haohaolee.com/blog/2012/03/11/til-what-emplace-is-in-c-plus-plus-11/

Blog: “What the Emplace Operation is in C++11.”
http://www.boost.org/doc/libs/1_48_0/doc/html/container/move_emplace.html

Boost: “Efficient Insertion.” Discusses move-aware containers and emplace placement insertion.

24.6 static_assert
The static_assert declaration allows you to test constant integral expressions at compile
time rather than runtime (with the assert macro; Section E.9). A static_assert decla-
ration has the form

If the integralConstantExpression evaluates to false, the compiler reports an error message
that includes the stringLiteral. The static_assert declaration can be used at namespace,
class or block scope. static_assert is typically used by library developers to report incor-
rect usage of a library at compile time. For more details on static_assert see

24.7 decltype
Operator decltype enables the compiler to determine an expression’s type at compile time.
If the expression is a function call, decltype determines the function’s return type, which
for a function template often changes based on the type(s) used to specialize the template.

The decltype operator is particularly useful when working with complex template
types for which it’s often difficult to provide, or even determine, the proper type declara-
tion. Rather than trying to write a complex type declaration, for example, that represents
the return type of a function, you can place in the parentheses of decltype an expression
that returns the complex type and let the compiler “figure it out.” This is used frequently
in the C++11 Standard Library class templates.

The format of a decltype expression is

The expression is not evaluated. This is commonly used with trailing return types in func-
tion definitions (Section 6.19) that return complex types.

Web Resources for decltype
http://www.cprogramming.com/c++11/c++11-auto-decltype-return-value-after-
function.html

Article: “Improved Type Inference in C++11: auto, decltype, and the new function declaration syn-
tax,” by Alex Allain. Includes code snippets.
http://en.wikipedia.org/wiki/Decltype

The Wikipedia entry for decltype. Discusses the motivation and semantics for decltype.
http://stackoverflow.com/questions/7623496/enlightening-usage-of-c11-decltype

Stackoverflow discussion: “Enlightening Usage of C++11 decltype.”
http://en.cppreference.com/w/cpp/language/decltype

The decltype specifier page on cppreference.com. Includes a small code example.

static_assert(integralConstantExpression, stringLiteral);

http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=343

decltype(expression)

cpphtp9_24_CPP11.fm Page 34 Saturday, May 18, 2013 2:10 PM

24.8 constexpr 24-35

http://blogs.oracle.com/pcarlini/entry/c_11_tidbits_decltype_part

Article: “C++11 Tidbits: Decltype (Part 1),” by Paolo Carlini.
http://www.codesynthesis.com/~boris/blog/2012/08/14/using-cxx11-auto-decltype/

Article: “Using C++11 auto and decltype.”
http://oopscenities.net/2011/05/04/c0x-decltype/

Blog: “C++11: decltype,” by Ernesto Bascón Pantoja. Includes code snippets.

24.8 constexpr
As you know, you can declare a variable const to indicate that its value never changes.
Such a variable is intialized at compile time when the initializer is itself a constant or literal.
If the initializer for a const variable is a function call, then the initialization occurs at run-
time. C++11 now includes keyword constexpr which can be used to declare variables,
functions and constructors that are evaluated at compile time and result in a constant. A
constexpr is implicitly const.

Consider class template numeric_limits (from header <limits>), which defines
characteristics of the numeric types (char, int, double, etc.), such as their minimum and
maximum values. For example, the member function

which returns a literal value representing the C++ implementation’s maximum value for a
numeric type. To store that value for an int in a variable, you could write

which calls the numeric_limits<int> specialization’s max function. Prior to C++11, the
max function call caused the preceding statement to be evaluated at runtime. In C++11,
because this function simply returns a literal value, the preceding statement can be evalu-
ated at compile time. This allows the compiler to perform additional optimizations and
improves application performance because there’s no runtime function-call overhead. See
Section 5.19 of the C++ standard document (http://bit.ly/CPlusPlus11Standard) for
the complete rules of defining constexpr variables, functions and constructors. Several of
the web resources provided below also discuss these rules.

Web Resources for constexpr
http://blog.smartbear.com/software-quality/bid/248591/Using-constexpr-to-
Improve-Security-Performance-and-Encapsulation-in-C

Blog: “Using constexpr to Improve Security, Performance and Encapsulation in C++,” by Danny
Kalev.
http://www.cprogramming.com/c++11/c++11-compile-time-processing-with-
constexpr.html

Article: “Constexpr—Generalized Constant Expressions in C++11,” by Alex Allain.
http://stackoverflow.com/questions/4748083/when-should-you-use-constexpr-
capability-in-c11

Stackoverflow discussion: “When should you use constexpr capability in C++11?”
http://cpptruths.blogspot.com/2011/07/want-speed-use-constexpr-meta.html

Blog: “Want speed? Use constexpr meta-programming!” by Sumant Tambe.

static constexpr T max() noexcept;

int maximum = numeric_limits<int>::max();

cpphtp9_24_CPP11.fm Page 35 Saturday, May 18, 2013 2:10 PM

24-36 Chapter 24 C++11: Additional Features

http://en.cppreference.com/w/cpp/language/constexpr

The constexpr specifier (since C++11) page on cppreference.com.
http://allanmcrae.com/2012/08/c11-part-7-constant-expressions/

Blog: “C++11—Part 7: Constant Expressions,” by Allan McRae.
http://gist.github.com/1457531

Code example: constexpr_demo.cpp.
http://enki-tech.blogspot.com/2012/09/c11-compile-time-calculator-with.html

Blog: “C++11: Simple Compile-time Calculator With constexpr,” by Thomas Badie.

24.9 Defaulted Special Member Functions
Recall that once you define any constructor in a class, the compiler does not generate a de-
fault constructor for that class. Prior to C++11, in any class that also needed a default con-
structor, you had to explicitly define a constructor with an empty parameter list or a
constructor that could be called with no arguments—that is, all of its parameters had de-
fault arguments.

In C++11, you can tell the compiler to explicitly generate the default versions of the
six special member functions—default constructor, copy constructor, move constructor, copy
assignment operator, move assignment operator or destructor. To do so, you simply follow the
special member function’s prototype with = default. For example, in a class called
Employee that has explicitly defined constructors, you can specify that the default con-
structor should be generated with the declaration

Web Resources for Defaulted Special Member Functions
http://blog.smartbear.com/software-quality/bid/167271/The-Biggest-Changes-in-C-
11-and-Why-You-Should-Care

Article: “The Biggest Changes in C++11 (and Why You Should Care),” by Danny Kalev. Discusses
deleted and defaulted functions.
http://stackoverflow.com/questions/6502828/c-default-keyword-classes-not-switch

Stackoverflow discussion: “C++: Default keyword (classes, not switch).”
http://www.nullptr.me/2012/01/05/c11-defaulted-and-deleted-functions/

Blog: “C++11: defaulted and deleted functions,” by Sarang Baheti.

24.10 Variadic Templates
Prior to C++11, each class or function template had a fixed number of template parame-
ters. If you needed a class or function template with different numbers of template param-
eters, you were requrired to define a template for each case. A variadic template accepts
any number of arguments, which can greatly simplify template programming. For exam-
ple, you can provide one variadic function template rather than many overloaded ones
with different numbers of parameters. Many template libraries prior to C++11 included
large amounts of duplicate code or made use of complex preprocessor macros to generate
all the necessary template definitions. Variadic templates make it easier to implement such

Employee() = default;

cpphtp9_24_CPP11.fm Page 36 Saturday, May 18, 2013 2:10 PM

24.10 Variadic Templates 24-37

libraries. C++11’s sizeof... operator can be used to determine the number of items in a
variadic template’s parameter pack, which is created by the compiler to store zero or more
arguments to a variadic template. For an example of a variadic template, see tuples in
Section 24.11.

Web Resources for Variadic Templates
http://en.cppreference.com/w/cpp/language/parameter_pack

Definition of a parameter pack and an example of a variadic function template, which must be im-
plemented using recursion.
http://en.wikipedia.org/wiki/Variadic_template

Definition: From Wikipedia.
http://en.cppreference.com/w/cpp/language/sizeof...

sizeof... operator reference page discusses how the sizeof... operator is used with variadic tem-
plates.
http://en.wikipedia.org/wiki/Sizeof#sizeof..._and_variadic_template_packs

The Wikipedia description of the C++ sizeof... operator.
http://oopscenities.net/2011/07/19/c0x-variadic-templates-functions/

Blog: “C++11: Variadic Templates (Functions),” by Ernesto Bascon Pantoja. Discusses the variadic
template functions.
http://www.cplusplus.com/articles/EhvU7k9E/

Article: “C++11—New Features—Variadic Templates,” by Henri Korpela. Discusses what a variadic
template is, the ellipsis operator, the sizeof operator, two ellipsis operators together, and uses of
variadic templates.
http://thenewcpp.wordpress.com/2011/11/23/variadic-templates-part-1-2/

Blog: “Variadic Templates, Part 1,” by Jarryd Beck. Discusses what variadic functions are and using
them in classes.
http://thenewcpp.wordpress.com/2011/11/29/variadic-templates-part-2/

Blog: “Variadic Templates, Part 2,” by Jarryd Beck. Discusses using variadic templates for function
parameters.
http://thenewcpp.wordpress.com/2012/02/15/variadic-templates-part-3-or-how-i-
wrote-a-variant-class/

Blog: “Variadic Templates, Part3 (Or How I Wrote a Variant Class),” by Jarryd Beck. Discusses a
stack-based replacement for boost::variant.
http://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Variadic-
Templates-are-Funadic

Video: “Variadic Functions are Funadic,” with Andrei Alexandrescu. This 1-1/2 hour talk provides
a solid coverage of variadic fundamentals, including typelists, the archetypal “safe printf” me-
chanics, and tuple construction and access. It also discusses more advanced uses, such as structured
argument lists.
http://www.devx.com/cplus/Article/41533

Article: “An Introduction to Variadic Templates in C++0x,” by Anthony Williams. Discusses declar-
ing a variadic template, type-safe variadic functions, and uses of variadic class templates.
http://www.generic-programming.org/~dgregor/cpp/lib-variadics.pdf

White paper: “Variadic Templates for the C++0x Standard Library,” by Douglas Gregor and Jaakko
Jarvi. Discusses the general utilities library, tuple creation functions, tuple helper class, element ac-
cess, relational operators, function objects, requirements, function object return types and more.

cpphtp9_24_CPP11.fm Page 37 Saturday, May 18, 2013 2:10 PM

24-38 Chapter 24 C++11: Additional Features

24.11 tuples
A common example of a variadic template is the C++11’s new tuple class (from header
<tuple>), which is a generalization of class template pair (introduced in Chapter 15). A
tuple is a fixed-size collection of values that can be of any type. In a tuple declaration,
every template type parameter specifies the type of a corresponding value in the tuple. So
the number of tuple elements matches the number of type parameters.

Creating a tuple
You can create a tuple either by declaring a tuple and specifying its type parameters or
by using the make_tuple function (also from header <tuple>), which infers the type pa-
rameters from the function arguments. The declaration

might represent information about the hammer inventory for a hardware store (part num-
ber, part name, quantity in stock and price). You can also create this tuple as follows

In this case, we use C++11’s auto keyword to infer the type of the hammerInventory vari-
able from the return value of make_tuple.

Using get<index> to Obtain a tuple Member
Recall that class template pair contains public members first and second for accessing
the two members of a pair. The number of members in a tuple varies, so there are no
such public data members in class template tuple. Instead, the <tuple> header provides
the function template get<index>(tupleObject), which returns a reference to the member
of tupleObject at the specified index. As in an array or container, the first element has index
0. The returned reference is either an rvalue reference or an lvalue reference depending on
whether the member is an rvalue or lvalue. To obtain a reference to the second element of
the hammerInventory tuple, you’d write

Other tuple Features
Fig. 24.15 shows several other features of class template tuple.

tuple<string, string, int, double> hammerInventory(
 "12345", "Hammer", 32, 9.95);

auto hammerInventory =
 make_tuple(string("12345"), string("Hammer"), 32, 9.95);

string partName = get<1>(hammerInventory);

Feature Description

<, <=, >, >=, ==, != tuples that contain the same number of members can be compared to one
another using the relational and equality operators. Corresponding members
of each tuple are compared and must support < to work with relational
tuple comparisons or == to work with equality tuple comparisons.

default constructor Creates a tuple in which each member is value initialized—primitive type
values are set to 0 or the equivalent of 0 and objects of class types are initial-
ized with their default constructors.

Fig. 24.15 | Some features of class template tuple. (Part 1 of 2.)

cpphtp9_24_CPP11.fm Page 38 Saturday, May 18, 2013 2:10 PM

24.12 initializer_list Class Template 24-39

Web Resources for tuples
http://en.cppreference.com/w/cpp/utility/tuple

C++ Reference for std::tuple.
http://stackoverflow.com/questions/10259351/what-are-good-use-cases-for-tuples-
in-c11

Stackoverflow discussion: “What are good use-cases for tuples in C++11?”
http://cpp-next.com/archive/2010/11/expressive-c-trouble-with-tuples/

Blog: “Expressive C++: The Trouble with Tuples,” by Eric Niebler.
http://nealabq.com/blog/2008/12/10/tuples-and-structs/

tuples and structs.
http://mitchnull.blogspot.com/2012/06/c11-tuple-implementation-details-part-
1.html

Blog: “C++11 Tuple Implementation Details.”
http://arkaitzj.wordpress.com/2009/11/20/c-tuples-a-quick-overview/

Blog: “C++ Tuples, a Quick Overview,” by Arkaitz Jimenez.
http://yapb-soc.blogspot.com/2012/12/fun-with-tuples.html

Blog: “Fun with Tuples,” by Scott Prager.
http://blog.codygriffin.com/2012/09/a-case-for-tuples.html

Blog: “A Case for Tuples,” by Cody Griffin.

24.12 initializer_list Class Template
Previously, you learned how to use C++11’s list initialization capabilities to initialize vari-
ables and containers. You can also define functions and constructors that receive list ini-
tializers as arguments. To do so, you specify a parameter that uses the initializer_list
class template (from the header <initializer_list>). The program of Fig. 24.16 defines
a function template sum (lines 8–18) that receives an initializer_list (line 9) and sums
its elements. An initializer list can be used with the range-based for statement (lines 14–
15) to iterate through all items in the initializer_list. In main, lines 24, 28 and 34
demonstrate passing a list initializer to sum’s initializer_list parameter. At the time of
this writing, list initializers and the initializer_list class were not fully supported in
Visual C++.

copy constructor Copies a tuple’s elements into a new tuple of the same type. The element
types stored in the constructor argument must have a copy constructor.

move constructor Moves a tuple’s elements into a new tuple of the same type.

copy assignment Uses the assignment operator (=) to copy the elements of the tuple in the
right operand into a tuple of the same type in the left operand. The element
types stored in the constructor argument must be copy assignable.

move assignment Uses the assignment operator (=) to move the elements of the tuple in the
right operand into a tuple of the same type in the left operand. The element
types stored in the constructor argument must be copy assignable.

Feature Description

Fig. 24.15 | Some features of class template tuple. (Part 2 of 2.)

cpphtp9_24_CPP11.fm Page 39 Saturday, May 18, 2013 2:10 PM

24-40 Chapter 24 C++11: Additional Features

In addition, the class template initializer_list provides the following member
functions:

• size—returns an initializer_list’s number of elements.

• begin—returns an iterator pointing to the intializer_list’s first element.

• end—returns an iterator pointing to one past the intializer_list’s last element.

Many of the C++ Standard Library containers now include constructors that receive
initializer_lists. For example, you could initialize a vector<int> as follows:

1 // Fig. 24.16: fig24_16.cpp
2 // Summing the elements of a list initializer
3 #include <iostream>
4 #include <initializer_list>
5 using namespace std;
6
7 // sum the elements of an initializer_list
8 template <typename T>
9 T sum()

10 {
11 T total{}; // value initialize total based on type T
12
13 // sum all the elements in list; requires += operator for type T
14 for (auto item : list)
15 total += item;
16
17 return total;
18 } // end function template sum
19
20 int main()
21 {
22 // display the sum of four ints contained in a list initializer
23 cout << "The sum of the items in { 1, 2, 3, 4 } is: "
24 << << endl;
25
26 // display the sum of three doubles contained in a list initializer
27 cout << "The sum of the items in { 1.1, 2.2, 3.3 } is: "
28 << << endl;
29
30 // display the sum of two strings contained in a list initializer
31 string s1{ "Happy " };
32 string s2{ "birthday!" };
33 cout << "The sum of the items in { s1, s2 } is: "
34 << << endl;
35 } // end main

The sum of the items in { 1, 2, 3, 4 } is: 10
The sum of the items in { 1.1, 2.2, 3.3 } is: 6.6
The sum of the items in { s1, s2 } is: Happy birthday!

Fig. 24.16 | Summing the elements of a list initializer.

vector< int > integers{ 1, 2, 3, 4, 5, 6 };

initializer_list<T> list

sum({ 1, 2, 3, 4 })

sum({ 1.1, 2.2, 3.3 })

sum({ s1, s2 })

cpphtp9_24_CPP11.fm Page 40 Saturday, May 18, 2013 2:10 PM

24.13 Inherited Constructors with Multiple Inheritance 24-41

or a map<string, int> as follows:

Figure 24.16 was tested in GNU’s C++ 4.7 and Apple’s Xcode LLVM compilers.

Web Resources for initializer_list
http://en.cppreference.com/w/cpp/utility/initializer_list

The initializer_list page on cppreference.com.
http://stackoverflow.com/questions/9676538/using-a-c11-initializer-list-with-a-
recursively-defined-type-using-constexpr

Stackoverflow discussion: “Using a C++11 initializer_list with a recursively defined type using
constexpr.”
http://www.informit.com/articles/article.aspx?p=1852519

Article: “Get to Know the New C++11 Initialization Forms,” by Danny Kalev.
http://allanmcrae.com/2012/06/c11-part-5-initialization/

Blog, “C++11—Part 5: Initialization,” by Allan McRae.
http://oopscenities.net/2011/05/09/c0x-initializer-lists/

Blog: “C++11: Initializer lists,” by Ernesto Bascón Pantoja.

24.13 Inherited Constructors with Multiple Inheritance
In Section 11.4, we showed how a derived class in C++11 can inherit a base class’s constructors,
and in Sections 23.7–23.8 we discussed multiple inheritance. A class with multiple base classes
can inherit constructors from any of its base classes. If a class inherits constructors with the
same signature from two or more base classes, then the derived class must define its own ver-
sion of that constructor; otherwise, a compilation error occurs. As you know, in any class that
explicitly defines a constructor, the compiler will not define a default constructor. When a de-
rived class is inheriting constructors from a base class and explicitly defines a constructor, if
a default constructor is needed, the derived class must define a default constructor either by
using = default to tell the compiler to gerenate the default constructor or by explicitly de-
fining a constructor that can be called with no arguments.

24.14 Regular Expressions with the regex Library
Regular expressions are specially formatted strings that are used to find patterns in text.
They can be used to validate data to ensure that it is in a particular format. For example,
a zip code must consist of five digits, and a last name must start with a capital letter.

The regex library (from header <regex>) provides several classes and algorithms for
recognizing and manipulating regular expressions. Class template basic_regex represents
a regular expression. The algorithm regex_match returns true if a string matches the reg-
ular expression. With regex_match, the entire string must match the regular expression.
The regex library also provides the algorithm regex_search, which returns true if any
part of an arbitrary string matches the regular expression.

Regular Expression Character Classes
The table in Fig. 24.17 specifies some character classes that can be used with regular ex-
pressions. A character class is not a C++ class—rather it’s simply an escape sequence that
represents a group of characters that might appear in a string.

map< string, int, less< string > > pairs
 { { "hammer", 22 }, { "drill", 15 }, { "saw", 40 } };

cpphtp9_24_CPP11.fm Page 41 Saturday, May 18, 2013 2:10 PM

24-42 Chapter 24 C++11: Additional Features

A word character is any alphanumeric character or underscore. A whitespace char-
acter is a space, tab, carriage return, newline or form feed. A digit is any numeric character.
Regular expressions are not limited to the character classes in Fig. 24.17. In Fig. 24.18,
you’ll see that regular expressions can use other notations to search for complex patterns
in strings.

24.14.1 Regular Expression Example
The program in Fig. 24.18 tries to match birthdays to a regular expression. For demon-
stration purposes, the expression in line 11 matches only birthdays that do not occur in
April and that belong to people whose names begin with "J". This example was tested with
Microsoft’s Visual C++ 2012 and Apple’s Xcode LLVM compilers—GNU does not yet
support regular expressions.

Character class Matches Character class Matches

\d any decimal digit \D any non-digit

\w any word character \W any non-word character

\s any whitespace character \S any non-whitespace character

Fig. 24.17 | Character classes.

1 // Fig. 24.18: fig24_18.cpp
2 // Demonstrating regular expressions.
3 #include <iostream>
4 #include <string>
5 #include <regex>
6 using namespace std;
7
8 int main()
9 {

10 // create a regular expression
11
12
13 // create a string to be tested
14 string string1 = "Jane's Birthday is 05-12-75\n"
15 "Dave's Birthday is 11-04-68\n"
16 "John's Birthday is 04-28-73\n"
17 "Joe's Birthday is 12-17-77";
18
19
20
21
22 // match regular expression to string and print out all matches
23 while (
24))
25 {
26 cout << << endl; // print the matching string

Fig. 24.18 | Regular expressions checking birthdays. (Part 1 of 2.)

regex expression("J.*\\d[0-35-9]-\\d\\d-\\d\\d");

// create an smatch object to hold the search results
smatch match;

regex_search(string1, match, expression,
regex_constants::match_not_eol

match.str()

cpphtp9_24_CPP11.fm Page 42 Saturday, May 18, 2013 2:10 PM

24.14 Regular Expressions with the regex Library 24-43

Creating the Regular Expression
Line 11 creates a regex object by passing a regular expression to the regex constructor.
The name regex is a typedef of the basic_regex class template that uses chars. We pre-
cede each backslash character in the initializer string with an additional backslash. Recall
that C++ treats a backslash in a string literal as the beginning of an escape sequence. To
insert a literal backslash in a string, you must escape the backslash character with another
backslash. For example, the character class \d must be represented as \\d in a C++ string
literal.

The first character in the regular expression, "J", is a literal character. Any string
matching this regular expression is required to start with "J". In a regular expression, the
dot character "." matches any single character. When the dot character is followed by an
asterisk, as in ".*", the regular expression matches any number of unspecified characters.
In general, when the operator "*" is applied to a pattern, the pattern will match zero or
more occurrences. By contrast, applying the operator "+" to a pattern causes the pattern to
match one or more occurrences. For example, both "A*" and "A+" will match "A", but only
"A*" will match an empty string.

As indicated in Fig. 24.17, "\d" matches any decimal digit. To specify sets of characters
other than those that belong to a predefined character class, characters can be listed in square
brackets, []. For example, the pattern "[aeiou]" matches any vowel. Ranges of characters
are represented by placing a dash (-) between two characters. In the example, "[0-35-9]"
matches only digits in the ranges specified by the pattern—i.e., any digit between 0 and 3 or
between 5 and 9; therefore, the pattern matches any digit except 4. You can also specify that
a pattern should match anything other than the characters in the brackets. To do so, place ^
as the first character in the brackets. It is important to note that "[^4]" is not the same as
"[0-35-9]"; "[^4]" matches any non-digit and digits other than 4.

Although the "–" character indicates a range when it is enclosed in square brackets,
instances of the "-" character outside grouping expressions are treated as literal characters.
Thus, the regular expression in line 11 searches for a string that starts with the letter “J”,
followed by any number of characters, followed by a two-digit number (of which the
second digit cannot be 4), followed by a dash, another two-digit number, a dash and
another two-digit number.

Using the Regular Expression to Search for Matches
Line 20 creates an smatch (pronounced “ess-match”; a typedef for match_results) object.
A match_results object, when passed as an argument to one of the regex algorithms, stores

27
28 // remove the matched substring from the string
29
30 } // end while
31 } // end function main

Jane's Birthday is 05-12-75
Joe's Birthday is 12-17-77

Fig. 24.18 | Regular expressions checking birthdays. (Part 2 of 2.)

string1 = match.suffix();

cpphtp9_24_CPP11.fm Page 43 Saturday, May 18, 2013 2:10 PM

24-44 Chapter 24 C++11: Additional Features

the regular expression’s match. An smatch stores an object of type string::const_iterator
that you can use to access the matching string. There are typedefs to support other string
representations such as const char* (cmatch).

The while statement (lines 23–30) searches string1 for matches to the regular
expression until none can be found. We use the call to regex_search as the while state-
ment condition (lines 23–24). regex_search returns true if the string (string1) con-
tains a match to the regular expression (expression). We also pass an smatch object to
regex_search so we can access the matching string. The last argument, match_not_eol,
prevents the "." character from matching a newline character. The body of the while
statement prints the substring that matched the regular expression by callig the match
object’s str function (line 26) and removes it from the string being searched by calling
the match object’s suffix function and assigning its result back to string1 (line 29). The
call to the match_results member function suffix returns a string from the end of the
match to the end of the string being searched. The output in Fig. 24.18 displays the two
matches that were found in string1. Notice that both matches conform to the pattern
specified by the regular expression.

Quantifiers
The asterisk (*) in line 11 of Fig. 24.18 is more formally called a quantifier. Figure 24.19
lists various quantifiers that you can place after a pattern in a regular expression and the
purpose of each quantifier.

We’ve already discussed how the asterisk (*) and plus (+) quantifiers work. The ques-
tion mark (?) quantifier matches zero or one occurrences of the pattern that it quantifies.
A set of braces containing one number, {n}, matches exactly n occurrences of the pattern
it quantifies. We demonstrate this quantifier in the next example. Including a comma after
the number enclosed in braces matches at least n occurrences of the quantified pattern.
The set of braces containing two numbers, {n,m}, matches between n and m occurrences
(inclusively) of the pattern that it quantifies. All of the quantifiers are greedy—they’ll
match as many occurrences of the pattern as possible until the pattern fails to make a
match. If a quantifier is followed by a question mark (?), the quantifier becomes lazy and
will match as few occurrences as possible as long as there is a successful match.

Quantifier Matches

* Matches zero or more occurrences of the preceding pattern.

+ Matches one or more occurrences of the preceding pattern.

? Matches zero or one occurrences of the preceding pattern.

{n} Matches exactly n occurrences of the preceding pattern.

{n,} Matches at least n occurrences of the preceding pattern.

{n,m} Matches between n and m (inclusive) occurrences of the pre-
ceding pattern.

Fig. 24.19 | Quantifiers used in regular expressions.

cpphtp9_24_CPP11.fm Page 44 Saturday, May 18, 2013 2:10 PM

24.14 Regular Expressions with the regex Library 24-45

24.14.2 Validating User Input with Regular Expressions
The program in Fig. 24.20 presents a more involved example that uses regular expressions
to validate name, address and telephone number information input by a user. This exam-
ple was tested with Microsoft’s Visual C++ 2012 and Apple’s Xcode LLVM compiler. At
the time of this writing, Apple’s Xcode LLVM compiler did not properly handle the OR
(|) operation for the regular expression in line 21.

1 // Fig. 24.20: fig24_20.cpp
2 // Validating user input with regular expressions.
3 #include <iostream>
4 #include <string>
5 #include <regex>
6 using namespace std;
7
8 bool validate(const string&, const string&); // validate prototype
9 string inputData(const string&, const string&); // inputData prototype

10
11 int main()
12 {
13 // enter the last name
14
15
16 // enter the first name
17
18
19 // enter the address
20
21
22
23 // enter the city
24
25
26
27 // enter the state
28
29
30
31 // enter the zip code
32
33
34 // enter the phone number
35
36
37
38 // display the validated data
39 cout << "\nValidated Data\n\n"
40 << "Last name: " << lastName << endl
41 << "First name: " << firstName << endl
42 << "Address: " << address << endl
43 << "City: " << city << endl
44 << "State: " << state << endl

Fig. 24.20 | Validating user input with regular expressions. (Part 1 of 3.)

string lastName = inputData("last name", "[A-Z][a-zA-Z]*");

string firstName = inputData("first name", "[A-Z][a-zA-Z]*");

string address = inputData("address",
 "[0-9]+\\s+([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

string city =
 inputData("city", "([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

string state = inputData("state",
 "([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

string zipCode = inputData("zip code", "\\d{5}");

string phoneNumber = inputData("phone number",
 "[1-9]\\d{2}-[1-9]\\d{2}-\\d{4}");

cpphtp9_24_CPP11.fm Page 45 Saturday, May 18, 2013 2:10 PM

24-46 Chapter 24 C++11: Additional Features

45 << "Zip code: " << zipCode << endl
46 << "Phone number: " << phoneNumber << endl;
47 } // end of function main
48
49 // validate the data format using a regular expression
50 bool validate(const string &data, const string &expression)
51 {
52 // create a regex to validate the data
53
54
55 } // end of function validate
56
57 // collect input from the user
58 string inputData(const string &fieldName, const string &expression)
59 {
60 string data; // store the data collected
61
62 // request the data from the user
63 cout << "Enter " << fieldName << ": ";
64 getline(cin, data);
65
66 // validate the data
67
68 {
69 cout << "Invalid " << fieldName << ".\n";
70 cout << "Enter " << fieldName << ": ";
71 getline(cin, data);
72 } // end while
73
74 return data;
75 } // end of function inputData

Enter last name: 12345
Invalid last name.
Enter last name: Blue
Enter first name: Betty
Enter address: 123
Invalid address.
Enter address: 123 Main Street
Enter city: SomeCity
Enter state: SomeState
Enter zip code: 1
Invalid zip code.
Enter zip code: 55555
Enter phone number: 555-555-123
Invalid phone number.
Enter phone number: 555-555-1234

Validated Data

Last name: Blue
First name: Betty
Address: 123 Main Street

Fig. 24.20 | Validating user input with regular expressions. (Part 2 of 3.)

regex validationExpression = regex(expression);
return regex_match(data, validationExpression);

while (!(validate(data, expression)))

cpphtp9_24_CPP11.fm Page 46 Saturday, May 18, 2013 2:10 PM

24.14 Regular Expressions with the regex Library 24-47

Function inputData
The program first asks the user to input a last name (line 14) by calling the inputData
function. The inputData function (lines 58–75) takes two arguments, the name of the
data being input and a regular expression that it must match. The function prompts the
user (line 63) to input the specified data. Then inputData checks whether the input is in
the correct format by calling the validate function (lines 50–55). That function takes two
arguments—the string to validate and the regular expression it must match. The func-
tion first uses the expression to create a regex object (line 53). Then it calls regex_match
to determine whether the string matches the expression. If the input isn’t valid, input-
Data prompts the user to enter the information again. Once the user enters a valid input,
the data is returned as a string. The program repeats that process until all the data fields
have been validated (lines 14–36). Then we display all the information (lines 39–46).

Matching an Entire String
In the previous example, we searched a string for substrings that matched a regular ex-
pression. In this example, we want to ensure that the entire string for each input con-
forms to a particular regular expression. For example, we want to accept "Smith" as a last
name, but not "9@Smith#". We use regex_match here instead of regex_search—
regex_match returns true only if the entire string matches the regular expression. Alter-
natively, you can use a regular expression that begins with a "^" character and ends with
a "$" character. The characters "^" and "$" represent the beginning and end of a string,
respectively. Together, these characters force a regular expression to return a match only if
the entire string being processed matches the regular expression.

Matching a Range of Characters
The regular expression in line 14 uses the square bracket and range notation to match an
uppercase first letter followed by letters of any case—a-z matches any lowercase letter, and
A-Z matches any uppercase letter. The * quantifier signifies that the second range of char-
acters may occur zero or more times in the string. Thus, this expression matches any
string consisting of one uppercase letter, followed by zero or more additional letters.

Matching Spaces and Digits; Using | to Match One String or Another
The notation \s matches a single whitespace character (lines 21, 25 and 29). The expression
\d{5}, used for the zipCode string (line 32), matches any five digits. The character "|"
(lines 21, 25 and 29) matches the expression to its left or the expression to its right. For ex-
ample, Hi (John|Jane) matches both Hi John and Hi Jane. In line 21, we use the character
"|" to indicate that the address can contain a word of one or more characters or a word of
one or more characters followed by a space and another word of one or more characters. Note
the use of parentheses to group parts of the regular expression. Quantifiers may be applied
to patterns enclosed in parentheses to create more complex regular expressions.

City: SomeCity
State: SomeState
Zip code: 55555
Phone number: 555-555-1234

Fig. 24.20 | Validating user input with regular expressions. (Part 3 of 3.)

cpphtp9_24_CPP11.fm Page 47 Saturday, May 18, 2013 2:10 PM

24-48 Chapter 24 C++11: Additional Features

Purpose of Each Regular Expression in This Example
The lastName and firstName variables (lines 14 and 17) both accept strings of any
length that begin with an uppercase letter. The regular expression for the address string
(line 21) matches a number of at least one digit, followed by a space, then either one or
more letters or else one or more letters followed by a space and another series of one or
more letters. Therefore, "10 Broadway" and "10 Main Street" are both valid addresses. As
currently formed, the regular expression in line 21 doesn’t match an address that does not
start with a number, or that has more than two words. The regular expressions for the city
(line 25) and state (line 29) strings match any word of at least one character or, alter-
natively, any two words of at least one character if the words are separated by a single space.
This means both Waltham and West Newton would match. Again, these regular expressions
would not accept names that have more than two words. The regular expression for the
zipCode string (line 32) ensures that the zip code is a five-digit number. The regular ex-
pression for the phoneNumber string (line 36) indicates that the phone number must be
of the form xxx-yyy-yyyy, where the xs represent the area code and the ys the number.
The first x and the first y cannot be zero, as specified by the range [1–9] in each case.

24.14.3 Replacing and Splitting Strings
Sometimes it’s useful to replace parts of one string with another or to split a string ac-
cording to a regular expression. For this purpose, the regex library provides the algorithm
regex_replace and the regex_token_iterator class, which we demonstrate in
Fig. 24.21. This example was tested with Microsoft’s Visual C++ 2012 and Apple’s Xcode
LLVM compilers.

1 // Fig. 24.21: fig24_21.cpp
2 // Using regex_replace algorithm.
3 #include <iostream>
4 #include <string>
5 #include <regex>
6 using namespace std;
7
8 int main()
9 {

10 // create the test strings
11 string testString1 = "This sentence ends in 5 stars *****";
12 string testString2 = "1, 2, 3, 4, 5, 6, 7, 8";
13 string output;
14
15 cout << "Original string: " << testString1 << endl;
16
17 // replace every * with a ^
18
19
20 cout << "^ substituted for *: " << testString1 << endl;
21
22 // replace "stars" with "carets"
23
24

Fig. 24.21 | Using regex_replace algorithm. (Part 1 of 2.)

testString1 =
 regex_replace(testString1, regex("*"), string("^"));

testString1 =
 regex_replace(testString1, regex("stars"), string("carets"));

cpphtp9_24_CPP11.fm Page 48 Saturday, May 18, 2013 2:10 PM

24.14 Regular Expressions with the regex Library 24-49

Replacing Substrings with regex_replace
Algorithm regex_replace replaces text in a string with new text wherever the original
string matches a regular expression. In line 19, regex_replace replaces every instance of

25 cout << "\"carets\" substituted for \"stars\": "
26 << testString1 << endl;
27
28 // replace every word with "word"
29
30
31 cout << "Every word replaced by \"word\": " << testString1 << endl;
32
33 // replace the first three digits with "digit"
34 cout << "\nOriginal string: " << testString2 << endl;
35
36
37 for (int i = 0; i < 3; ++i) // loop three times
38 {
39
40
41 } // end for
42
43 cout << "Replace first 3 digits by \"digit\": "
44 << testString2Copy << endl;
45
46 // split the string at the commas
47 cout << "string split at commas [";
48
49
50
51
52
53
54 while () // tokenIterator isn’t empty
55 {
56 output += "\"" + + "\", ";
57 // advance the iterator
58 } // end while
59
60 // delete the ", " at the end of output string
61 cout << output.substr(0, output.size() - 2) << "]" << endl;
62 } // end of function main

Original string: This sentence ends in 5 stars *****
^ substituted for *: This sentence ends in 5 stars ^^^^^
"carets" substituted for "stars": This sentence ends in 5 carets ^^^^^
Every word replaced by "word": word word word word word word ^^^^^

Original string: 1, 2, 3, 4, 5, 6, 7, 8
Replace first 3 digits by "digit": digit, digit, digit, 4, 5, 6, 7, 8
string split at commas ["1", "2", "3", "4", "5", "6", "7", "8"]

Fig. 24.21 | Using regex_replace algorithm. (Part 2 of 2.)

testString1 =
 regex_replace(testString1, regex("\\w+"), string("word"));

string testString2Copy = testString2;

testString2Copy = regex_replace(testString2Copy,
 regex("\\d"), "digit", regex_constants::format_first_only);

regex splitter(",\\s"); // regex to split a string at commas
sregex_token_iterator tokenIterator(testString2.begin(),
 testString2.end(), splitter, -1); // token iterator
sregex_token_iterator end; // empty iterator

tokenIterator != end

(*tokenIterator).str()
++tokenIterator;

cpphtp9_24_CPP11.fm Page 49 Saturday, May 18, 2013 2:10 PM

24-50 Chapter 24 C++11: Additional Features

"*" in testString1 with "^". The regular expression ("*") precedes character "*" with
a backslash, \. Typically, "*" is a quantifier indicating that a regular expression should
match any number of occurrences of a preceding pattern. However, in this case we want
to find all occurrences of the literal character "*"; to do this, we must escape character "*"
with character "\". By escaping a special regular expression character with a \, we tell the
regular expression matching engine to find the actual character "*" rather than use it as a
quantifier. Also, the first and last arguments to this version of function regex_replace
must be strings. Lines 23–24 use regex_replace to replace the string "stars" in
testString1 with the string "carets". Lines 29–30 use regex_replace to replace every
word in testString1 with the string "word".

Lines 37–41 replace the first three instances of a digit ("\d") in testString2 with the
text "digit". We pass regex_constants::format_first_only as an additional argument
to regex_replace (lines 39–40). This argument tells regex_replace to replace only the
first substring that matches the regular expression. Normally regex_replace would
replace all occurrences of the pattern. We put this call inside a for loop that runs three
times, each time replacing the first instance of a digit with the text "digit". We use a copy
of testString2 (line 35) so we can use the original textString2 for the next part of the
example.

Obtaining Substrings with a regex_token_iterator
Next we use a regex_token_iterator to divide a string into several substrings. A
regex_token_iterator iterates through the parts of a string that match a regular expres-
sion. Lines 50 and 51 use sregex_token_iterator, which is a typedef that indicates the
results are to be manipulated with a string::const_iterator. We create the iterator
(lines 50–51) by passing the constructor two iterators (testString2.begin() and
testString2.end())—which represent the beginning and end of the string to iterate
over—and the regular expression to look for. In our case we want to iterate over the parts
of the string that don’t match the regular expression. To do that we pass -1 to the con-
structor. This indicates that it should iterate over each substring that doesn’t match the
regular expression. The original string is broken at delimiters that match the specified
regular expression. We use a while statement (lines 54–58) to add each substring to the
string output. The regex_token_iterator end (line 52) is an empty iterator. We’ve it-
erated over the entire string when tokenIterator equals end (line 54).

24.15 Raw String Literals
Section 24.14 presented regular expressions. Because C++ treats a backslash in a string literal
as the beginning of an escape sequence, we were required to precede each character class in a
regular expression with another backslash. For example, the character class \d was represent-
ed as \\d. As of C++11, C++ now supports raw string literals that have the format

where the optionalDelimiter before the left parenthesis, (, and after the right parenthesis,
), must be identical, if provided. The parentheses are required around the characters that
compose the raw string literal. The compiler automatically inserts backslashes as necessary
in a raw string literal to properly escape special characters like double quotes ("), backslash-
es (\), etc.

R"optionalDelimiter(characters)optionalDelimiter"

cpphtp9_24_CPP11.fm Page 50 Saturday, May 18, 2013 2:10 PM

24.16 Wrap-Up 24-51

As an example, the string literal in line 11 in Fig. 24.18

could be written with a raw string literal as

which makes the regular expression more readable. The compiler converts the raw string
literal into the original string literal from line 11 in Fig. 24.18.

The preceding raw string literal can include optional delimiters up to 16 characters
long before the left parenthesis, (, and after the right parenthesis,), as in

Raw string literals are not restricted to use with regular expressions. They may be used
in any context that requires a string literal. They may also include line breaks, in which
case the compiler inserts \n escape sequences. For example, the raw string literal

is treated as the string literal

Web Resources for Raw String Literals
http://solarianprogrammer.com/2011/10/16/cpp-11-raw-strings-literals-tutorial/

Tutorial: “C++11 raw strings literals.”
http://stackoverflow.com/questions/3093632/why-must-c-c-string-literal-
declarations-be-single-line

Stackoverflow discussion: “Why must C/C++ string literal declarations be single-line?”
http://impactcore.blogspot.com/2011/03/c0x-raw-string-literals-simple-
example.html

Blog: “C++0x Raw String Literals: A simple example.”
http://en.cppreference.com/w/cpp/language/string_literal

The string literal reference page.
http://akrzemi1.wordpress.com/2012/08/12/user-defined-literals-part-i/

Blog: “User-defined literals — Part I.”

24.16 Wrap-Up
In this chapter we discussed various new language and library features of C++11. We
showed how to use the other smart pointer library classes (unique_ptr was introduced in
Chapter 17). You learned how to use the shared_ptr and weak_ptr classes to avoid mem-
ory leaks when using dynamically allocated memory. We demonstrated how to use custom
deleter functions to allow shared_ptrs to manage resources that require special destruc-
tion procedures. We also explained how weak_ptrs can be used to prevent memory leaks
in circularly referential data.

"J.*\\d[0-35-9]-\\d\\d-\\d\\d"

R"(J.*\d[0-35-9]-\d\d-\d\d)"

R"MYDELIMITER(J.*\d[0-35-9]-\d\d-\d\d)MYDELIMITER"

R"(multiple
lines
of
text)"

"multiple\nlines\nof\ntext"

cpphtp9_24_CPP11.fm Page 51 Saturday, May 18, 2013 2:10 PM

24-52 Chapter 24 C++11: Additional Features

We introduced multithreading—one of the most significant updates in the C++11
standard. You learned how to use the async function template and future class template
to execute a function in a separate thread and to obtain the function’s results.

You learned how to use noexcept to indicate that a function does not throw any
exceptions, which allows the compiler to perform additional optimizations. We intro-
duced C++11’s features for implementing move semantics to prevent unnecessary copying
of objects that are about to be destroyed, and we showed how to implement a class’s move
constructor and move assignment operator using rvalue references. You also saw how to
convert an lvalue to an rvalue reference with the Standard Library function std::move.

We discussed how to use a static_assert declaration to test constant integral expres-
sions at compile time rather than runtime. This feature is typically used by library devel-
opers to report incorrect usage of a library at compile time.

You learned that the decltype operator enables the compiler to determine an expres-
sion’s type at compile time, and that decltype is particularly useful when working with
complex template types for which it’s often difficult to provide, or even determine, the
proper type declaration.

We introduced constexpr which can be used to declare variables, functions and con-
structors that are evaluated at compile time and that result in a constant. You learned how
to use = default to indicate that the compiler should generate default versions of a class’s
special member functions—default constructor, copy constructor, move constructor, copy
assignment operator, move assignment operator and destructor.

We introduced the concept of variadic templates that can have any number of type
parameters then discussed C++11’s new tuple class template, which is a variadic template
for creating a fixed-size collection of values in which the type of each value matches the
type of the corresponding type parameter. Next, you learned how to use C++11’s class
template initializer_list to create a function that can be called with a list initializer.

Finally, we discussed the regex library and the symbols that are used to form regular
expressions. We provided examples of how to use regular-expression classes, including
regex, match_results and regex_token_iterator. You learned how to find patterns in
a string and match entire strings to patterns with algorithms regex_search and
regex_match. We demonstrated how to replace characters in a string with regex_replace
and how to split strings into tokens with a regex_token_iterator.

cpphtp9_24_CPP11.fm Page 52 Saturday, May 18, 2013 2:10 PM

