
26ATM Case Study, Part 2:
Implementing an Object-
Oriented Design

O b j e c t i v e s
In this chapter you’ll:

■ Incorporate inheritance into
the design of the ATM.

■ Incorporate polymorphism
into the design of the ATM.

■ Fully implement in C++ the
UML-based object-oriented
design of the ATM software.

■ Study a detailed code
walkthrough of the ATM
software system that explains
the implementation issues.

cpphtp10_26_ATM2.fm Page 1 Tuesday, February 28, 2017 4:31 PM

26_2 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

26.1 Introduction
In Chapter 25, we developed an object-oriented design for our ATM system. We now begin
implementing our object-oriented design in C++. In Section 26.2, we show how to convert
class diagrams to C++ code. In Section 26.3, we tune the design with inheritance and poly-
morphism. Then we present a full C++ code implementation of the ATM software in
Section 26.4. The code is carefully commented and the discussions of the implementation
are thorough and precise. Studying this application provides the opportunity for you to see
a more substantial application of the kind you’re likely to encounter in industry.

26.2 Starting to Program the Classes of the ATM System
[Note: This section can be studied after Chapter 9.]

Visibility
We now apply access specifiers to the members of our classes. Access specifiers public and
private determine the visibility or accessibility of an object’s attributes and operations to
other objects. Before we can begin implementing our design, we must consider which at-
tributes and operations of our classes should be public and which should be private.

Previously, we observed that data members normally should be private and that
member functions invoked by clients of a given class should be public. Member functions
that are called only by other member functions of the class as “utility functions,” however,
normally should be private. The UML employs visibility markers for modeling the vis-
ibility of attributes and operations. Public visibility is indicated by placing a plus sign (+)
before an operation or an attribute; a minus sign (–) indicates private visibility.
Figure 26.1 shows our updated class diagram with visibility markers included. [Note: We
do not include any operation parameters in Fig. 26.1. This is perfectly normal. Adding vis-
ibility markers does not affect the parameters already modeled in the class diagrams of
Figs. 25.18–25.21.]

Navigability
Before we begin implementing our design in C++, we introduce an additional UML nota-
tion. The class diagram in Fig. 26.2 further refines the relationships among classes in the
ATM system by adding navigability arrows to the association lines. Navigability arrows
(represented as arrows with stick arrowheads in the class diagram) indicate in which direction
an association can be traversed and are based on the collaborations modeled in communica-

26.1 Introduction
26.2 Starting to Program the Classes of the

ATM System
26.3 Incorporating Inheritance into the

ATM System
26.4 ATM Case Study Implementation

26.4.1 Class ATM
26.4.2 Class Screen
26.4.3 Class Keypad

26.4.4 Class CashDispenser
26.4.5 Class DepositSlot
26.4.6 Class Account
26.4.7 Class BankDatabase
26.4.8 Class Transaction
26.4.9 Class BalanceInquiry

26.4.10 Class Withdrawal
26.4.11 Class Deposit
26.4.12 Test Program ATMCaseStudy.cpp

26.5 Wrap-Up

cpphtp10_26_ATM2.fm Page 2 Tuesday, February 28, 2017 4:31 PM

26.2 Starting to Program the Classes of the ATM System 26_3

tion and sequence diagrams (see Section 25.8). When implementing a system designed using
the UML, you use navigability arrows to help determine which objects need references or
pointers to other objects. For example, the navigability arrow pointing from class ATM to class
BankDatabase indicates that we can navigate from the former to the latter, thereby enabling
the ATM to invoke the BankDatabase’s operations. However, since Fig. 26.2 does not contain
a navigability arrow pointing from class BankDatabase to class ATM, the BankDatabase can-
not access the ATM’s operations. Associations in a class diagram that have navigability arrows
at both ends or do not have navigability arrows at all indicate bidirectional navigability—
navigation can proceed in either direction across the association.

Like the class diagram of Fig. 25.10, the class diagram of Fig. 26.2 omits classes
BalanceInquiry and Deposit to keep the diagram simple. The navigability of the associ-
ations in which these classes participate closely parallels the navigability of class
Withdrawal’s associations. Recall from Section 25.4 that BalanceInquiry has an associa-
tion with class Screen. We can navigate from class BalanceInquiry to class Screen along
this association, but we cannot navigate from class Screen to class BalanceInquiry. Thus,

Fig. 26.1 | Class diagram with visibility markers.

ATM

– userAuthenticated : Boolean = false

BalanceInquiry

– accountNumber : Integer

CashDispenser

– count : Integer = 500

DepositSlot

Screen

Keypad

Withdrawal

– accountNumber : Integer
– amount : Double

BankDatabase

Deposit

– accountNumber : Integer
– amount : Double

+ authenticateUser() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

Account

– accountNumber : Integer
– pin : Integer
– availableBalance : Double
– totalBalance : Double

+ validatePIN() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

+ execute()

+ execute()
+ displayMessage()

+ dispenseCash()
+ isSufficientCashAvailable() : Boolean

+ getinput() : Integer+ execute()

+ isEnvelopeReceived() : Boolean

cpphtp10_26_ATM2.fm Page 3 Tuesday, February 28, 2017 4:31 PM

26_4 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

if we were to model class BalanceInquiry in Fig. 26.2, we would place a navigability
arrow at class Screen’s end of this association. Also recall that class Deposit associates with
classes Screen, Keypad and DepositSlot. We can navigate from class Deposit to each of
these classes, but not vice versa. We therefore would place navigability arrows at the
Screen, Keypad and DepositSlot ends of these associations. [Note: We model these addi-
tional classes and associations in our final class diagram in Section 26.3, after we have sim-
plified the structure of our system by incorporating the object-oriented concept of
inheritance.]

Implementing the ATM System from Its UML Design
We are now ready to begin implementing the ATM system. We first convert the classes in
the diagrams of Fig. 26.1 and Fig. 26.2 into C++ header files. This code will represent the
“skeleton” of the system. In Section 26.3, we modify the header files to incorporate the
object-oriented concept of inheritance. In Section 26.4, we present the complete working
C++ code for our model.

As an example, we begin to develop the header file for class Withdrawal from our
design of class Withdrawal in Fig. 26.1. We use this figure to determine the attributes and
operations of the class. We use the UML model in Fig. 26.2 to determine the associations
among classes. We follow the following five guidelines for each class:

1. Use the name in the first compartment of a class in a class diagram to define the
class in a header file (Fig. 26.3). Use #ifndef, #define and #endif preprocessor

Fig. 26.2 | Class diagram with navigability arrows.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

1

0..*

0..11
0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Withdrawal

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

cpphtp10_26_ATM2.fm Page 4 Tuesday, February 28, 2017 4:31 PM

26.2 Starting to Program the Classes of the ATM System 26_5

directives to prevent the header from being included more than once in a pro-
gram.

2. Use the attributes located in the class’s second compartment to declare the data
members. For example, the private attributes accountNumber and amount of
class Withdrawal yield the code in Fig. 26.4.

3. Use the associations described in the class diagram to declare references (or pointers,
where appropriate) to other objects. For example, according to Fig. 26.2, With-
drawal can access one object of class Screen, one object of class Keypad, one object
of class CashDispenser and one object of class BankDatabase. Class Withdrawal
must maintain handles on these objects to send messages to them, so lines 19–22
of Fig. 26.5 declare four references as private data members. In the implementa-
tion of class Withdrawal in Section 26.4, a constructor initializes these data mem-
bers with references to actual objects. Lines 6–9 #include the header files
containing the definitions of classes Screen, Keypad, CashDispenser and BankDa-
tabase so that we can declare references to objects of these classes in lines 19–22.

4. It turns out that including the header files for classes Screen, Keypad, CashDis-
penser and BankDatabase in Fig. 26.5 does more than is necessary. Class With-

1 // Fig. 26.3: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3
4
5
6
7 {
8 }; // end class Withdrawal
9

10

Fig. 26.3 | Definition of class Withdrawal enclosed in preprocessor wrappers.

1 // Fig. 26.4: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6 class Withdrawal
7 {
8 private:
9

10
11
12 }; // end class Withdrawal
13
14 #endif // WITHDRAWAL_H

Fig. 26.4 | Adding attributes to the Withdrawal class header file.

#ifndef WITHDRAWAL_H
#define WITHDRAWAL_H

class Withdrawal

#endif // WITHDRAWAL_H

// attributes
int accountNumber; // account to withdraw funds from
double amount; // amount to withdraw

cpphtp10_26_ATM2.fm Page 5 Tuesday, February 28, 2017 4:31 PM

26_6 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

drawal contains references to objects of these classes—it does not contain actual
objects—and the amount of information required by the compiler to create a ref-
erence differs from that which is required to create an object. Recall that creating
an object requires that you provide the compiler with a definition of the class that

introduces the name of the class as a new user-defined type and indicates the data
members that determine how much memory is required to store the object. De-
claring a reference (or pointer) to an object, however, requires only that the com-
piler knows that the object’s class exists—it does not need to know the size of the
object. Any reference (or pointer), regardless of the class of the object to which it
refers, contains only the memory address of the actual object. The amount of
memory required to store an address is a physical characteristic of the computer’s
hardware. The compiler thus knows the size of any reference (or pointer). As a
result, including a class’s full header file when declaring only a reference to an ob-
ject of that class is unnecessary—we need to introduce the name of the class, but
we do not need to provide the data layout of the object, because the compiler al-
ready knows the size of all references. C++ provides a statement called a forward
declaration that signifies that a header file contains references or pointers to a
class, but that the class definition lies outside the header file. We can replace the
#includes in the Withdrawal class definition of Fig. 26.5 with forward declara-
tions of classes Screen, Keypad, CashDispenser and BankDatabase (lines 6–9 in

1 // Fig. 26.5: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6
7
8
9

10
11 class Withdrawal
12 {
13 private:
14 // attributes
15 int accountNumber; // account to withdraw funds from
16 double amount; // amount to withdraw
17
18
19
20
21
22
23 }; // end class Withdrawal
24
25 #endif // WITHDRAWAL_H

Fig. 26.5 | Declaring references to objects associated with class Withdrawal.

#include "Screen.h" // include definition of class Screen
#include "Keypad.h" // include definition of class Keypad
#include "CashDispenser.h" // include definition of class CashDispenser
#include "BankDatabase.h" // include definition of class BankDatabase

// references to associated objects
Screen &screen; // reference to ATM’s screen
Keypad &keypad; // reference to ATM's keypad
CashDispenser &cashDispenser; // reference to ATM's cash dispenser
BankDatabase &bankDatabase; // reference to the account info database

cpphtp10_26_ATM2.fm Page 6 Tuesday, February 28, 2017 4:31 PM

26.2 Starting to Program the Classes of the ATM System 26_7

Fig. 26.6). Rather than #include the entire header file for each of these classes,
we place only a forward declaration of each class in the header file for class With-
drawal. If class Withdrawal contained actual objects instead of references (i.e., if
the ampersands in lines 19–22 were omitted), then we’d need to #include the
full header files.
 Using a forward declaration (where possible) instead of including a full header
file helps avoid a preprocessor problem called a circular include. This problem
occurs when the header file for a class A #includes the header file for a class B and
vice versa. Some preprocessors are not be able to resolve such #include directives,
causing a compilation error. If class A, for example, uses only a reference to an ob-
ject of class B, then the #include in class A’s header file can be replaced by a for-
ward declaration of class B to prevent the circular include.

5. Use the operations located in the third compartment of Fig. 26.1 to write the
function prototypes of the class’s member functions. If we’ve not yet specified a
return type for an operation, we declare the member function with return type
void. Refer to the class diagrams of Figs. 6.21–6.24 to declare any necessary pa-
rameters. For example, adding the public operation execute in class Withdraw-
al, which has an empty parameter list, yields the prototype in line 15 of
Fig. 26.7. [Note: We code the definitions of member functions in .cpp files when
we implement the complete ATM system in Section 26.4.]

1 // Fig. 26.6: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6
7
8
9

10
11 class Withdrawal
12 {
13 private:
14 // attributes
15 int accountNumber; // account to withdraw funds from
16 double amount; // amount to withdraw
17
18 // references to associated objects
19 Screen &screen; // reference to ATM’s screen
20 Keypad &keypad; // reference to ATM's keypad
21 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
22 BankDatabase &bankDatabase; // reference to the account info database
23 }; // end class Withdrawal
24
25 #endif // WITHDRAWAL_H

Fig. 26.6 | Using forward declarations in place of #include directives.

class Screen; // forward declaration of class Screen
class Keypad; // forward declaration of class Keypad
class CashDispenser; // forward declaration of class CashDispenser
class BankDatabase; // forward declaration of class BankDatabase

cpphtp10_26_ATM2.fm Page 7 Tuesday, February 28, 2017 4:31 PM

26_8 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

This concludes our discussion of the basics of generating class header files from UML
diagrams. In Section 26.3, we demonstrate how to modify the header files to incorporate
the object-oriented concept of inheritance.

Self-Review Exercises for Section 26.2
26.1 State whether the following statement is true or false, and if false, explain why: If an attribute
of a class is marked with a minus sign (-) in a class diagram, the attribute is not directly accessible
outside of the class.

26.2 In Fig. 26.2, the association between the ATM and the Screen indicates that:
a) we can navigate from the Screen to the ATM
b) we can navigate from the ATM to the Screen
c) Both a and b; the association is bidirectional
d) None of the above

26.3 Write C++ code to begin implementing the design for class Account.

Software Engineering Observation 26.1
Several UML modeling tools can convert UML-based designs into C++ code, considerably
speeding the implementation process. For more information on these “automatic” code
generators, refer to our UML Resource Center at www.deitel.com/UML/.

1 // Fig. 26.7: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6 class Screen; // forward declaration of class Screen
7 class Keypad; // forward declaration of class Keypad
8 class CashDispenser; // forward declaration of class CashDispenser
9 class BankDatabase; // forward declaration of class BankDatabase

10
11 class Withdrawal
12 {
13 public:
14 // operations
15
16 private:
17 // attributes
18 int accountNumber; // account to withdraw funds from
19 double amount; // amount to withdraw
20
21 // references to associated objects
22 Screen &screen; // reference to ATM’s screen
23 Keypad &keypad; // reference to ATM's keypad
24 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
25 BankDatabase &bankDatabase; // reference to the account info database
26 }; // end class Withdrawal
27
28 #endif // WITHDRAWAL_H

Fig. 26.7 | Adding operations to the Withdrawal class header file.

void execute(); // perform the transaction

cpphtp10_26_ATM2.fm Page 8 Tuesday, February 28, 2017 4:31 PM

26.3 Incorporating Inheritance into the ATM System 26_9

26.3 Incorporating Inheritance into the ATM System
[Note: This section can be studied after Chapter 12.]
We now revisit our ATM system design to see how it might benefit from inheritance. To
apply inheritance, we first look for commonality among classes in the system. We create an
inheritance hierarchy to model similar (yet not identical) classes in a more efficient and
elegant manner that enables us to process objects of these classes polymorphically. We then
modify our class diagram to incorporate the new inheritance relationships. Finally, we
demonstrate how our updated design is translated into C++ header files.

In Section 25.4, we encountered the problem of representing a financial transaction in
the system. Rather than create one class to represent all transaction types, we decided to
create three individual transaction classes—BalanceInquiry, Withdrawal and Deposit—to
represent the transactions that the ATM system can perform. Figure 26.8 shows the attri-
butes and operations of these classes, which have one attribute (accountNumber) and one
operation (execute) in common. Each class requires attribute accountNumber to specify the
account to which the transaction applies. Each class contains operation execute, which the
ATM invokes to perform the transaction. Clearly, BalanceInquiry, Withdrawal and Deposit
represent types of transactions. Figure 26.8 reveals commonality among the transaction
classes, so using inheritance to factor out the common features seems appropriate for
designing these classes. We place the common functionality in base class Transaction and
derive classes BalanceInquiry, Withdrawal and Deposit from Transaction (Fig. 26.9).

The UML specifies a relationship called a generalization to model inheritance.
Figure 26.9 is the class diagram that models the inheritance relationship between base class
Transaction and its three derived classes. The arrows with triangular hollow arrowheads
indicate that classes BalanceInquiry, Withdrawal and Deposit are derived from class
Transaction. Class Transaction is said to be a generalization of its derived classes. The
derived classes are said to be specializations of class Transaction.

Classes BalanceInquiry, Withdrawal and Deposit share integer attribute account-
Number, so we factor out this common attribute and place it in base class Transaction. We
no longer list accountNumber in the second compartment of each derived class, because
the three derived classes inherit this attribute from Transaction. Recall, however, that
derived classes cannot access private attributes of a base class. We therefore include

Fig. 26.8 | Attributes and operations of classes BalanceInquiry, Withdrawal and
Deposit.

BalanceInquiry

- accountNumber : Integer

Withdrawal

- accountNumber : Integer
- amount : Double

Deposit

- accountNumber : Integer
- amount : Double

+ execute()

+ execute() + execute()

cpphtp10_26_ATM2.fm Page 9 Tuesday, February 28, 2017 4:31 PM

26_10 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

public member function getAccountNumber in class Transaction. Each derived class
inherits this member function, enabling the derived class to access its accountNumber as
needed to execute a transaction.

According to Fig. 26.8, classes BalanceInquiry, Withdrawal and Deposit also share
operation execute, so base class Transaction should contain public member function
execute. However, it does not make sense to implement execute in class Transaction,
because the functionality that this member function provides depends on the specific type
of the actual transaction. We therefore declare member function execute as a pure vir-
tual function in base class Transaction. This makes Transaction an abstract class and
forces any class derived from Transaction that must be a concrete class (i.e., BalanceIn-
quiry, Withdrawal and Deposit) to implement pure virtual member function execute
to make the derived class concrete. The UML requires that we place abstract class names
(and pure virtual functions—abstract operations in the UML) in italics, so Transaction
and its member function execute appear in italics in Fig. 26.9. Operation execute is not
italicized in derived classes BalanceInquiry, Withdrawal and Deposit. Each derived class
overrides base class Transaction’s execute member function with an appropriate imple-
mentation. Figure 26.9 includes operation execute in the third compartment of classes
BalanceInquiry, Withdrawal and Deposit, because each class has a different concrete
implementation of the overridden member function.

Processing Transactions Polymorphically
A derived class can inherit interface and/or implementation from a base class. Compared
to a hierarchy designed for implementation inheritance, one designed for interface inher-
itance tends to have its functionality lower in the hierarchy—a base class signifies one or
more functions that should be defined by each class in the hierarchy, but the individual
derived classes provide their own implementations of the function(s). The inheritance hi-
erarchy designed for the ATM system takes advantage of this type of inheritance, which
provides the ATM with an elegant way to execute all transactions “in the general.” Each class
derived from Transaction inherits some implementation details (e.g., data member ac-
countNumber), but the primary benefit of incorporating inheritance into our system is that

Fig. 26.9 | Class diagram modeling generalization relations\hip between base class
Transaction and derived classes BalanceInquiry, Withdrawal and Deposit.

Transaction

– accountNumber : Integer

BalanceInquiry

+ getAccountNumber()
+ execute()

+ execute()

Withdrawal

+ execute()

– amount : Double

Deposit

+ execute()

– amount : Double

cpphtp10_26_ATM2.fm Page 10 Tuesday, February 28, 2017 4:31 PM

26.3 Incorporating Inheritance into the ATM System 26_11

the derived classes share a common interface (e.g., pure virtual member function exe-
cute). The ATM can aim a Transaction pointer at any transaction, and when the ATM in-
vokes execute through this pointer, the version of execute appropriate to that transaction
(i.e., the version implemented in that derived class’s .cpp file) runs automatically. For ex-
ample, suppose a user chooses to perform a balance inquiry. The ATM aims a Transaction
pointer at a new object of class BalanceInquiry; the compiler allows this because a Bal-
anceInquiry is a Transaction. When the ATM uses this pointer to invoke execute, Bal-
anceInquiry’s version of execute is called.

This polymorphic approach also makes the system easily extensible. Should we wish to
create a new transaction type (e.g., funds transfer or bill payment), we would just create
an additional Transaction derived class that overrides the execute member function with
a version appropriate for the new transaction type. We would need to make only minimal
changes to the system code to allow users to choose the new transaction type from the
main menu and for the ATM to instantiate and execute objects of the new derived class. The
ATM could execute transactions of the new type using the current code, because it executes
all transactions identically.

As you learned earlier in the chapter, an abstract class like Transaction is one for
which you never intend to instantiate objects. An abstract class simply declares common
attributes and behaviors for its derived classes in an inheritance hierarchy. Class Transac-
tion defines the concept of what it means to be a transaction that has an account number
and executes. You may wonder why we bother to include pure virtual member function
execute in class Transaction if execute lacks a concrete implementation. Conceptually,
we include this member function because it’s the defining behavior of all transactions—
executing. Technically, we must include member function execute in base class Transac-
tion so that the ATM (or any other class) can polymorphically invoke each derived class’s
overridden version of this function through a Transaction pointer or reference.

Additional Attribute of Classes Withdrawal and Deposit
Derived classes BalanceInquiry, Withdrawal and Deposit inherit attribute accountNum-
ber from base class Transaction, but classes Withdrawal and Deposit contain the addi-
tional attribute amount that distinguishes them from class BalanceInquiry. Classes
Withdrawal and Deposit require this additional attribute to store the amount of money
that the user wishes to withdraw or deposit. Class BalanceInquiry has no need for such
an attribute and requires only an account number to execute. Even though two of the three
Transaction derived classes share this attribute, we do not place it in base class Transac-
tion—we place only features common to all the derived classes in the base class, so derived
classes do not inherit unnecessary attributes (and operations).

Class Diagram with Transaction Hierarchy Incorporated
Figure 26.10 presents an updated class diagram of our model that incorporates inheritance
and introduces class Transaction. We model an association between class ATM and class
Transaction to show that the ATM, at any given moment, either is executing a transaction or
is not (i.e., zero or one objects of type Transaction exist in the system at a time). Because a
Withdrawal is a type of Transaction, we no longer draw an association line directly between
class ATM and class Withdrawal—derived class Withdrawal inherits base class Transaction’s
association with class ATM. Derived classes BalanceInquiry and Deposit also inherit this as-
sociation, which replaces the previously omitted associations between classes BalanceInqui-

cpphtp10_26_ATM2.fm Page 11 Tuesday, February 28, 2017 4:31 PM

26_12 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

ry and Deposit and class ATM. Note again the use of triangular hollow arrowheads to indicate
the specializations of class Transaction, as indicated in Fig. 26.9.

We also add an association between class Transaction and the BankDatabase
(Fig. 26.10). All Transactions require a reference to the BankDatabase so they can access
and modify account information. Each Transaction derived class inherits this reference, so
we no longer model the association between class Withdrawal and the BankDatabase. The
association between class Transaction and the BankDatabase replaces the previously
omitted associations between classes BalanceInquiry and Deposit and the BankDatabase.

We include an association between class Transaction and the Screen because all
Transactions display output to the user via the Screen. Each derived class inherits this
association. Therefore, we no longer include the association previously modeled between
Withdrawal and the Screen. Class Withdrawal still participates in associations with the
CashDispenser and the Keypad. We do not move these associations to base class Trans-
action, because the association with the Keypad applies only to classes Withdrawal and
Deposit, and the association with the CashDispenser applies only to class Withdrawal.

Our class diagram incorporating inheritance (Fig. 26.10) also models Deposit and
BalanceInquiry. We show associations between Deposit and both the DepositSlot and
the Keypad. BalanceInquiry takes part in no associations other than those inherited from

Fig. 26.10 | Class diagram of the ATM system (incorporating inheritance). Note that
abstract class name Transaction appears in italics.

Accesses/modifies an
account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

11

1

0..1

0..11
0..1

0..1 0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Transaction

BalanceInquiry

Withdrawal
DepositSlot

ATM

CashDispenser

Screen

Deposit

Account

BankDatabase

cpphtp10_26_ATM2.fm Page 12 Tuesday, February 28, 2017 4:31 PM

26.3 Incorporating Inheritance into the ATM System 26_13

class Transaction—a BalanceInquiry interacts only with the BankDatabase and the
Screen.

Figure 26.1 showed attributes and operations with visibility markers. Now we present
a modified class diagram in Fig. 26.11 that includes abstract base class Transaction. This
abbreviated diagram does not show inheritance relationships (these appear in Fig. 26.10),
but instead shows the attributes and operations after we’ve employed inheritance in our
system. Abstract class name Transaction and abstract operation name execute in class
Transaction appear in italics. To save space, we do not include those attributes shown by
associations in Fig. 26.10—we do, however, include them in the C++ implementation.
We also omit all operation parameters, as we did in Fig. 26.1—incorporating inheritance
does not affect the parameters already modeled in Figs. 25.18–25.21.

Fig. 26.11 | Class diagram after incorporating inheritance into the system.

ATM

– userAuthenticated : Boolean = false

BalanceInquiry

CashDispenser

– count : Integer = 500

DepositSlot

Screen

Keypad
Withdrawal

– amount : Double

BankDatabase

Deposit

– amount : Double

+ authenticateUser() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

Account

– accountNumber : Integer
– pin : Integer
– availableBalance : Double
– totalBalance : Double

+ validatePIN() : Boolean
+ getAvailableBalance() : Double
+ getTotalBalance() : Double
+ credit()
+ debit()

+ execute()

Transaction

– accountNumber : Integer

+ getAccountNumber()
+ execute()

+ execute()

+ displayMessage()

+ dispenseCash()
+ isSufficientCashAvailable() : Boolean

+ getinput() : Integer

+ execute()

+ isEnvelopeReceived() : Boolean

cpphtp10_26_ATM2.fm Page 13 Tuesday, February 28, 2017 4:31 PM

26_14 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Implementing the ATM System Design Incorporating Inheritance
We now modify our implementation to incorporate inheritance, using class Withdrawal
as an example.

1. If a class A is a generalization of class B, then class B is derived from (and is a spe-
cialization of) class A. For example, abstract base class Transaction is a general-
ization of class Withdrawal. Thus, class Withdrawal is derived from (and is a
specialization of) class Transaction. Figure 26.12 contains a portion of class
Withdrawal’s header file, in which the class definition indicates the inheritance
relationship between Withdrawal and Transaction (line 9).

2. If class A is an abstract class and class B is derived from class A, then class B must
implement the pure virtual functions of class A if class B is to be a concrete class.
For example, class Transaction contains pure virtual function execute, so class
Withdrawal must implement this member function if we want to instantiate a
Withdrawal object. Figure 26.13 contains the C++ header file for class Withdraw-
al from Fig. 26.10 and Fig. 26.11. Class Withdrawal inherits data member ac-
countNumber from base class Transaction, so Withdrawal does not declare this
data member. Class Withdrawal also inherits references to the Screen and the
BankDatabase from its base class Transaction, so we do not include these refer-
ences in our code. Figure 26.11 specifies attribute amount and operation execute
for class Withdrawal. Line 19 of Fig. 26.13 declares a data member for attribute
amount. Line 16 contains the function prototype for operation execute. Recall

Software Engineering Observation 26.2
A complete class diagram shows all the associations among classes and all the attributes
and operations for each class. When the number of class attributes, operations and
associations is substantial (as in Fig. 26.10 and Fig. 26.11), a good practice that promotes
readability is to divide this information between two class diagrams—one focusing on
associations and the other on attributes and operations. However, when examining classes
modeled in this fashion, it’s crucial to consider both class diagrams to get a complete view
of the classes. For example, one must refer to Fig. 26.10 to observe the inheritance
relationship between Transaction and its derived classes that is omitted from Fig. 26.11.

1 // Fig. 26.12: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6 #include "Transaction.h" // Transaction class definition
7
8
9

10 {
11 }; // end class Withdrawal
12
13 #endif // WITHDRAWAL_H

Fig. 26.12 | Withdrawal class definition that derives from Transaction.

// class Withdrawal derives from base class Transaction
class Withdrawal : public Transaction

cpphtp10_26_ATM2.fm Page 14 Tuesday, February 28, 2017 4:31 PM

 Self-Review Exercises for Section 26.3 26_15

that, to be a concrete class, derived class Withdrawal must provide a concrete im-
plementation of the pure virtual function execute in base class Transaction.
The prototype in line 16 signals your intent to override the base class pure vir-
tual function. You must provide this prototype if you’ll provide an implemen-
tation in the .cpp file. We present this implementation in Section 26.4. The
keypad and cashDispenser references (lines 20–21) are data members derived
from Withdrawal’s associations in Fig. 26.10. In the implementation of this class
in Section 26.4, a constructor initializes these references to actual objects. Once
again, to be able to compile the declarations of the references in lines 20–21, we
include the forward declarations in lines 8–9.

ATM Case Study Wrap-Up
This concludes our object-oriented design of the ATM system. A complete C++ imple-
mentation of the ATM system in 850 lines of code appears in Section 26.4. This working
implementation uses key programming notions, including classes, objects, encapsulation,
visibility, composition, inheritance and polymorphism. The code is abundantly comment-
ed and conforms to the coding practices you’ve learned. Mastering this code is a wonderful
capstone experience.

Self-Review Exercises for Section 26.3
26.4 The UML uses an arrow with a to indicate a generalization relationship.

a) solid filled arrowhead
b) triangular hollow arrowhead

1 // Fig. 26.13: Withdrawal.h
2 // Definition of class Withdrawal that represents a withdrawal transaction
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6 #include "Transaction.h" // Transaction class definition
7
8 class Keypad; // forward declaration of class Keypad
9 class CashDispenser; // forward declaration of class CashDispenser

10
11 // class Withdrawal derives from base class Transaction
12 class Withdrawal : public Transaction
13 {
14 public:
15 // member function overriding execute in base class Transaction
16 virtual void execute(); // perform the transaction
17 private:
18 // attributes
19 double amount; // amount to withdraw
20 Keypad &keypad; // reference to ATM's keypad
21 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
22 }; // end class Withdrawal
23
24 #endif // WITHDRAWAL_H

Fig. 26.13 | Withdrawal class header file based on Fig. 26.10 and Fig. 26.11.

cpphtp10_26_ATM2.fm Page 15 Tuesday, February 28, 2017 4:31 PM

26_16 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

c) diamond-shaped hollow arrowhead
d) stick arrowhead

26.5 State whether the following statement is true or false, and if false, explain why: The UML
requires that we underline abstract class names and operation names.

26.6 Write a C++ header file to begin implementing the design for class Transaction specified
in Fig. 26.10 and Fig. 26.11. Be sure to include private references based on class Transaction’s as-
sociations. Also be sure to include public get functions for any of the private data members that
the derived classes must access to perform their tasks.

26.4 ATM Case Study Implementation
This section contains the complete working implementation of the ATM system that we
designed in Chapter 25 and this chapter. We consider the classes in the order in which we
identified them in Section 25.4:

• ATM

• Screen

• Keypad

• CashDispenser

• DepositSlot

• Account

• BankDatabase

• Transaction

• BalanceInquiry

• Withdrawal

• Deposit

We apply the guidelines discussed in Sections 26.2 and 26.3 to code these classes based on
how we modeled them in the UML class diagrams of Figs. 26.10 and 26.11. To develop
the definitions of classes’ member functions, we refer to the activity diagrams presented in
Section 25.6 and the communication and sequence diagrams presented in Section 25.8.
Note that our ATM design does not specify all the program logic and may not specify all
the attributes and operations required to complete the ATM implementation. This is a
normal part of the object-oriented design process. As we implement the system, we com-
plete the program logic and add attributes and behaviors as necessary to construct the
ATM system specified by the requirements specification in Section 25.3.

We conclude the discussion by presenting a C++ program (ATMCaseStudy.cpp) that
starts the ATM and puts the other classes in the system in use. Recall that we’re developing
a first version of the ATM system that runs on a personal computer and uses the com-
puter’s keyboard and monitor to approximate the ATM’s keypad and screen. We also only
simulate the actions of the ATM’s cash dispenser and deposit slot. We attempt to imple-
ment the system, however, so that real hardware versions of these devices could be inte-
grated without significant changes in the code.

cpphtp10_26_ATM2.fm Page 16 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_17

26.4.1 Class ATM
Class ATM (Figs. 26.14–26.15) represents the ATM as a whole. Figure 26.14 contains the
ATM class definition, enclosed in #ifndef, #define and #endif preprocessor directives to
ensure that this definition gets included only once in a program. We discuss lines 6–11
shortly. Lines 16–17 contain the function prototypes for the class’s public member func-
tions. The class diagram of Fig. 26.11 does not list any operations for class ATM, but we
now declare a public member function run (line 17) in class ATM that allows an external
client of the class (i.e., ATMCaseStudy.cpp) to tell the ATM to run. We also include a func-
tion prototype for a default constructor (line 16), which we discuss shortly.

Lines 19–25 of Fig. 26.14 implement the class’s attributes as private data members.
We determine all but one of these attributes from the class diagrams of Figs. 26.10– 26.11.

1 // ATM.h
2 // ATM class definition. Represents an automated teller machine.
3 #ifndef ATM_H
4 #define ATM_H
5
6 #include "Screen.h" // Screen class definition
7 #include "Keypad.h" // Keypad class definition
8 #include "CashDispenser.h" // CashDispenser class definition
9 #include "DepositSlot.h" // DepositSlot class definition

10 #include "BankDatabase.h" // BankDatabase class definition
11 class Transaction; // forward declaration of class Transaction
12
13 class ATM
14 {
15 public:
16 ATM(); // constructor initializes data members
17 void run(); // start the ATM
18 private:
19 bool userAuthenticated; // whether user is authenticated
20 int currentAccountNumber; // current user's account number
21 Screen screen; // ATM's screen
22 Keypad keypad; // ATM's keypad
23 CashDispenser cashDispenser; // ATM's cash dispenser
24 DepositSlot depositSlot; // ATM's deposit slot
25 BankDatabase bankDatabase; // account information database
26
27 // private utility functions
28 void authenticateUser(); // attempts to authenticate user
29 void performTransactions(); // performs transactions
30 int displayMainMenu() const; // displays main menu
31
32 // return object of specified Transaction derived class
33 Transaction *createTransaction(int);
34 }; // end class ATM
35
36 #endif // ATM_H

Fig. 26.14 | Definition of class ATM, which represents the ATM.

cpphtp10_26_ATM2.fm Page 17 Tuesday, February 28, 2017 4:31 PM

26_18 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

We implement the UML Boolean attribute userAuthenticated in Fig. 26.11 as a bool
data member in C++ (line 19). Line 20 declares a data member not found in our UML
design—an int data member currentAccountNumber that keeps track of the account
number of the current authenticated user. We’ll soon see how the class uses this data
member.

Lines 21–24 create objects to represent the parts of the ATM. Recall from the class
diagram of Fig. 26.10 that class ATM has composition relationships with classes Screen,
Keypad, CashDispenser and DepositSlot, so class ATM is responsible for their creation.
Line 25 creates a BankDatabase, with which the ATM interacts to access and manipulate
bank account information. [Note: If this were a real ATM system, the ATM class would
receive a reference to an existing database object created by the bank. However, in this
implementation we are only simulating the bank’s database, so class ATM creates the Bank-
Database object with which it interacts.] Lines 6–10 #include the class definitions of
Screen, Keypad, CashDispenser, DepositSlot and BankDatabase so that the ATM can
store objects of these classes.

Lines 28–30 and 33 contain function prototypes for private utility functions that the
class uses to perform its tasks. We’ll see how these functions serve the class shortly.
Member function createTransaction (line 33) returns a Transaction pointer. To
include the class name Transaction in this file, we must at least include a forward decla-
ration of class Transaction (line 11). Recall that a forward declaration tells the compiler
that a class exists, but that the class is defined elsewhere. A forward declaration is sufficient
here, as we are using a Transaction pointer as a return type—if we were creating or
returning an actual Transaction object, we would need to #include the full Transaction
header file.

ATM Class Member-Function Definitions
Figure 26.15 contains the member-function definitions for class ATM. Lines 3–7 #include
the header files required by the implementation file ATM.cpp. Including the ATM header file
allows the compiler to ensure that the class’s member functions are defined correctly. This
also allows the member functions to use the class’s data members.

1 // ATM.cpp
2 // Member-function definitions for class ATM.
3 #include "ATM.h" // ATM class definition
4 #include "Transaction.h" // Transaction class definition
5 #include "BalanceInquiry.h" // BalanceInquiry class definition
6 #include "Withdrawal.h" // Withdrawal class definition
7 #include "Deposit.h" // Deposit class definition
8
9 // enumeration constants represent main menu options

10 enum MenuOption { BALANCE_INQUIRY = 1, WITHDRAWAL, DEPOSIT, EXIT };
11
12 // ATM default constructor initializes data members
13 ATM::ATM()
14 : userAuthenticated (false), // user is not authenticated to start
15 currentAccountNumber(0) // no current account number to start
16 {

Fig. 26.15 | ATM class member-function definitions. (Part 1 of 4.)

cpphtp10_26_ATM2.fm Page 18 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_19

17 // empty body
18 } // end ATM default constructor
19
20 // start ATM
21 void ATM::run()
22 {
23 // welcome and authenticate user; perform transactions
24 while (true)
25 {
26 // loop while user is not yet authenticated
27 while (!userAuthenticated)
28 {
29 screen.displayMessageLine("\nWelcome!");
30 authenticateUser(); // authenticate user
31 } // end while
32
33 performTransactions(); // user is now authenticated
34 userAuthenticated = false; // reset before next ATM session
35 currentAccountNumber = 0; // reset before next ATM session
36 screen.displayMessageLine("\nThank you! Goodbye!");
37 } // end while
38 } // end function run
39
40 // attempt to authenticate user against database
41 void ATM::authenticateUser()
42 {
43 screen.displayMessage("\nPlease enter your account number: ");
44 int accountNumber = keypad.getInput(); // input account number
45 screen.displayMessage("\nEnter your PIN: "); // prompt for PIN
46 int pin = keypad.getInput(); // input PIN
47
48 // set userAuthenticated to bool value returned by database
49 userAuthenticated =
50 bankDatabase.authenticateUser(accountNumber, pin);
51
52 // check whether authentication succeeded
53 if (userAuthenticated)
54 {
55 currentAccountNumber = accountNumber; // save user's account #
56 } // end if
57 else
58 screen.displayMessageLine(
59 "Invalid account number or PIN. Please try again.");
60 } // end function authenticateUser
61
62 // display the main menu and perform transactions
63 void ATM::performTransactions()
64 {
65 // local pointer to store transaction currently being processed
66 Transaction *currentTransactionPtr;
67
68 bool userExited = false; // user has not chosen to exit

Fig. 26.15 | ATM class member-function definitions. (Part 2 of 4.)

cpphtp10_26_ATM2.fm Page 19 Tuesday, February 28, 2017 4:31 PM

26_20 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

69
70 // loop while user has not chosen option to exit system
71 while (!userExited)
72 {
73 // show main menu and get user selection
74 int mainMenuSelection = displayMainMenu();
75
76 // decide how to proceed based on user's menu selection
77 switch (mainMenuSelection)
78 {
79 // user chose to perform one of three transaction types
80 case BALANCE_INQUIRY:
81 case WITHDRAWAL:
82 case DEPOSIT:
83 // initialize as new object of chosen type
84 currentTransactionPtr =
85 createTransaction(mainMenuSelection);
86
87 currentTransactionPtr->execute(); // execute transaction
88
89 // free the space for the dynamically allocated Transaction
90 delete currentTransactionPtr;
91
92 break;
93 case EXIT: // user chose to terminate session
94 screen.displayMessageLine("\nExiting the system...");
95 userExited = true; // this ATM session should end
96 break;
97 default: // user did not enter an integer from 1-4
98 screen.displayMessageLine(
99 "\nYou did not enter a valid selection. Try again.");
100 break;
101 } // end switch
102 } // end while
103 } // end function performTransactions
104
105 // display the main menu and return an input selection
106 int ATM::displayMainMenu() const
107 {
108 screen.displayMessageLine("\nMain menu:");
109 screen.displayMessageLine("1 - View my balance");
110 screen.displayMessageLine("2 - Withdraw cash");
111 screen.displayMessageLine("3 - Deposit funds");
112 screen.displayMessageLine("4 - Exit\n");
113 screen.displayMessage("Enter a choice: ");
114 return keypad.getInput(); // return user's selection
115 } // end function displayMainMenu
116
117 // return object of specified Transaction derived class
118 Transaction *ATM::createTransaction(int type)
119 {
120 Transaction *tempPtr; // temporary Transaction pointer
121

Fig. 26.15 | ATM class member-function definitions. (Part 3 of 4.)

cpphtp10_26_ATM2.fm Page 20 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_21

Line 10 declares an enum named MenuOption that contains constants corresponding to
the four options in the ATM’s main menu (i.e., balance inquiry, withdrawal, deposit and
exit). Note that setting BALANCE_INQUIRY to 1 causes the subsequent enumeration constants
to be assigned the values 2, 3 and 4, as enumeration constant values increment by 1.

Lines 13–18 define class ATM’s constructor, which initializes the class’s data members.
When an ATM object is first created, no user is authenticated, so line 14 uses a member ini-
tializer to set userAuthenticated to false. Likewise, line 15 initializes currentAccount-
Number to 0 because there is no current user yet.

ATM Member Function run
ATM member function run (lines 21–38) uses an infinite loop (lines 24–37) to repeatedly
welcome a user, attempt to authenticate the user and, if authentication succeeds, allow the
user to perform transactions. After an authenticated user performs the desired transactions
and chooses to exit, the ATM resets itself, displays a goodbye message to the user and re-
starts the process. We use an infinite loop here to simulate the fact that an ATM appears
to run continuously until the bank turns it off (an action beyond the user’s control). An
ATM user has the option to exit the system, but does not have the ability to turn off the
ATM completely.

Authenticating a User
Inside member function run’s infinite loop, lines 27–31 cause the ATM to repeatedly wel-
come and attempt to authenticate the user as long as the user has not been authenticated (i.e.,
!userAuthenticated is true). Line 29 invokes member function displayMessageLine of
the ATM’s screen to display a welcome message. Like Screen member function displayMes-
sage designed in the case study, member function displayMessageLine (declared in line 13
of Fig. 26.16 and defined in lines 20–23 of Fig. 26.17) displays a message to the user, but

122 // determine which type of Transaction to create
123 switch (type)
124 {
125 case BALANCE_INQUIRY: // create new BalanceInquiry transaction
126 tempPtr = new BalanceInquiry(
127 currentAccountNumber, screen, bankDatabase);
128 break;
129 case WITHDRAWAL: // create new Withdrawal transaction
130 tempPtr = new Withdrawal(currentAccountNumber, screen,
131 bankDatabase, keypad, cashDispenser);
132 break;
133 case DEPOSIT: // create new Deposit transaction
134 tempPtr = new Deposit(currentAccountNumber, screen,
135 bankDatabase, keypad, depositSlot);
136 break;
137 } // end switch
138

139 return tempPtr; // return the newly created object
140 } // end function createTransaction

Fig. 26.15 | ATM class member-function definitions. (Part 4 of 4.)

cpphtp10_26_ATM2.fm Page 21 Tuesday, February 28, 2017 4:31 PM

26_22 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

this member function also outputs a newline after displaying the message. We’ve added this
member function during implementation to give class Screen’s clients more control over the
placement of displayed messages. Line 30 of Fig. 26.15 invokes class ATM’s private utility
function authenticateUser (lines 41–60) to attempt to authenticate the user.

We refer to the requirements specification to determine the steps necessary to authen-
ticate the user before allowing transactions to occur. Line 43 of member function authen-
ticateUser invokes member function displayMessage of the ATM’s screen to prompt the
user to enter an account number. Line 44 invokes member function getInput of the ATM’s
keypad to obtain the user’s input, then stores the integer value entered by the user in a local
variable accountNumber. Member function authenticateUser next prompts the user to
enter a PIN (line 45), and stores the PIN input by the user in a local variable pin (line 46).
Next, lines 49–50 attempt to authenticate the user by passing the accountNumber and pin
entered by the user to the bankDatabase’s authenticateUser member function. Class ATM
sets its userAuthenticated data member to the bool value returned by this function—
userAuthenticated becomes true if authentication succeeds (i.e., accountNumber and
pin match those of an existing Account in bankDatabase) and remains false otherwise.
If userAuthenticated is true, line 55 saves the account number entered by the user (i.e.,
accountNumber) in the ATM data member currentAccountNumber. The other member
functions of class ATM use this variable whenever an ATM session requires access to the user’s
account number. If userAuthenticated is false, lines 58–59 use the screen’s display-
MessageLine member function to indicate that an invalid account number and/or PIN
was entered and the user must try again. Note that we set currentAccountNumber only
after authenticating the user’s account number and the associated PIN—if the database
could not authenticate the user, currentAccountNumber remains 0.

After member function run attempts to authenticate the user (line 30), if userAu-
thenticated is still false, the while loop in lines 27–31 executes again. If userAuthen-
ticated is now true, the loop terminates and control continues with line 33, which calls
class ATM’s utility function performTransactions.

Performing Transactions
Member function performTransactions (lines 63–103) carries out an ATM session for an
authenticated user. Line 66 declares a local Transaction pointer, which we aim at a Balan-
ceInquiry, Withdrawal or Deposit object representing the ATM transaction currently be-
ing processed. We use a Transaction pointer here to allow us to take advantage of
polymorphism. Also, we use the role name included in the class diagram of Fig. 25.7—cur-

rentTransaction—in naming this pointer. As per our pointer-naming convention, we ap-
pend “Ptr” to the role name to form the variable name currentTransactionPtr. Line 68
declares another local variable—a bool called userExited that keeps track of whether the
user has chosen to exit. This variable controls a while loop (lines 71–102) that allows the
user to execute an unlimited number of transactions before choosing to exit. Within this
loop, line 74 displays the main menu and obtains the user’s menu selection by calling an ATM
utility function displayMainMenu (defined in lines 106–115). This member function dis-
plays the main menu by invoking member functions of the ATM’s screen and returns a menu
selection obtained from the user through the ATM’s keypad. Note that this member function
is const because it does not modify the contents of the object. Line 74 stores the user’s se-
lection returned by displayMainMenu in local variable mainMenuSelection.

cpphtp10_26_ATM2.fm Page 22 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_23

After obtaining a main menu selection, member function performTransactions uses
a switch statement (lines 77–101) to respond to the selection appropriately. If main-
MenuSelection is equal to any of the three enumeration constants representing transac-
tion types (i.e., if the user chose to perform a transaction), lines 84–85 call utility function
createTransaction (defined in lines 118–140) to return a pointer to a newly instantiated
object of the type that corresponds to the selected transaction. Pointer currentTransac-
tionPtr is assigned the pointer returned by createTransaction. Line 87 then uses cur-
rentTransactionPtr to invoke the new object’s execute member function to execute the
transaction. We’ll discuss Transaction member function execute and the three Trans-
action derived classes shortly. Finally, when the Transaction derived class object is no
longer needed, line 90 releases the memory dynamically allocated for it.

We aim the Transaction pointer currentTransactionPtr at an object of one of the
three Transaction derived classes so that we can execute transactions polymorphically. For
example, if the user chooses to perform a balance inquiry, mainMenuSelection equals BAL-
ANCE_INQUIRY, leading createTransaction to return a pointer to a BalanceInquiry object.
Thus, currentTransactionPtr points to a BalanceInquiry, and invoking currentTrans-
actionPtr->execute() results in BalanceInquiry’s version of execute being called.

Creating a Transaction
Member function createTransaction (lines 118–140) uses a switch statement (lines
123–137) to instantiate a new Transaction derived class object of the type indicated by
the parameter type. Recall that member function performTransactions passes main-
MenuSelection to this member function only when mainMenuSelection contains a value
corresponding to one of the three transaction types. Therefore type equals either BAL-
ANCE_INQUIRY, WITHDRAWAL or DEPOSIT. Each case in the switch statement aims the tem-
porary pointer tempPtr at a newly created object of the appropriate Transaction derived
class. Each constructor has a unique parameter list, based on the specific data required to
initialize the derived class object. A BalanceInquiry requires only the account number of
the current user and references to the ATM’s screen and the bankDatabase. In addition to
these parameters, a Withdrawal requires references to the ATM’s keypad and cashDispens-
er, and a Deposit requires references to the ATM’s keypad and depositSlot. As you’ll soon
see, the BalanceInquiry, Withdrawal and Deposit constructors each specify reference pa-
rameters to receive the objects representing the required parts of the ATM. Thus, when
member function createTransaction passes objects in the ATM (e.g., screen and keypad)
to the initializer for each newly created Transaction derived class object, the new object
actually receives references to the ATM’s composite objects. We discuss the transaction classes
in more detail in Sections 26.4.8–26.4.11.

Exiting the Main Menu and Processing Invalid Selections
After executing a transaction (line 87 in performTransactions), userExited remains false
and the while loop in lines 71–102 repeats, returning the user to the main menu. However,
if a user does not perform a transaction and instead selects the main menu option to exit, line
95 sets userExited to true, causing the condition of the while loop (!userExited) to be-
come false. This while is the final statement of member function performTransactions,
so control returns to the calling function run. If the user enters an invalid main menu selec-
tion (i.e., not an integer from 1–4), lines 98–99 display an appropriate error message, user-
Exited remains false and the user returns to the main menu to try again.

cpphtp10_26_ATM2.fm Page 23 Tuesday, February 28, 2017 4:31 PM

26_24 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Awaiting the Next ATM User
When performTransactions returns control to member function run, the user has chosen
to exit the system, so lines 34–35 reset the ATM’s data members userAuthenticated and
currentAccountNumber to prepare for the next ATM user. Line 36 displays a goodbye
message before the ATM starts over and welcomes the next user.

26.4.2 Class Screen
Class Screen (Figs. 26.16–26.17) represents the screen of the ATM and encapsulates all
aspects of displaying output to the user. Class Screen approximates a real ATM’s screen
with a computer monitor and outputs text messages using cout and the stream insertion
operator (<<). In this case study, we designed class Screen to have one operation—dis-

playMessage. For greater flexibility in displaying messages to the Screen, we now declare
three Screen member functions—displayMessage, displayMessageLine and display-
DollarAmount. The prototypes for these member functions appear in lines 12–14 of
Fig. 26.16.

1 // Screen.h
2 // Screen class definition. Represents the screen of the ATM.
3 #ifndef SCREEN_H
4 #define SCREEN_H
5
6 #include <string>
7 using namespace std;
8
9 class Screen

10 {
11 public:
12 void displayMessage(string) const; // output a message
13 void displayMessageLine(string) const; // output message with newline
14 void displayDollarAmount(double) const; // output a dollar amount
15 }; // end class Screen
16
17 #endif // SCREEN_H

Fig. 26.16 | Screen class definition.

1 // Screen.cpp
2 // Member-function definitions for class Screen.
3 #include <iostream>
4 #include <iomanip>
5 #include "Screen.h" // Screen class definition
6 using namespace std;
7
8 // output a message without a newline
9 void Screen::displayMessage(string message) const

10 {
11 cout << message;
12 } // end function displayMessage

Fig. 26.17 | Screen class member-function definitions. (Part 1 of 2.)

cpphtp10_26_ATM2.fm Page 24 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_25

Screen Class Member-Function Definitions
Figure 26.17 contains the member-function definitions for class Screen. Line 5 #includes
the Screen class definition. Member function displayMessage (lines 9–12) takes a
string as an argument and prints it to the console using cout and the stream insertion
operator (<<). The cursor stays on the same line, making this member function appropri-
ate for displaying prompts to the user. Member function displayMessageLine (lines 15–
18) also prints a string, but outputs a newline to move the cursor to the next line. Finally,
member function displayDollarAmount (lines 21–24) outputs a properly formatted dol-
lar amount (e.g., $123.45). Line 23 uses stream manipulators fixed and setprecision to
output a value formatted with two decimal places.

26.4.3 Class Keypad
Class Keypad (Figs. 26.18–26.19) represents the keypad of the ATM and is responsible for
receiving all user input. Recall that we are simulating this hardware, so we use the com-
puter’s keyboard to approximate the keypad. A computer keyboard contains many keys
not found on the ATM’s keypad. However, we assume that the user presses only the keys
on the computer keyboard that also appear on the keypad—the keys numbered 0–9 and
the Enter key. Line 9 of Fig. 26.18 contains the function prototype for class Keypad’s one
member function getInput. This member function is declared const because it does not
change the object.

13
14 // output a message with a newline
15 void Screen::displayMessageLine(string message) const
16 {
17 cout << message << endl;
18 } // end function displayMessageLine
19
20 // output a dollar amount
21 void Screen::displayDollarAmount(double amount) const
22 {
23 cout << fixed << setprecision(2) << "$" << amount;
24 } // end function displayDollarAmount

1 // Keypad.h
2 // Keypad class definition. Represents the keypad of the ATM.
3 #ifndef KEYPAD_H
4 #define KEYPAD_H
5
6 class Keypad
7 {
8 public:
9 int getInput() const; // return an integer value entered by user

10 }; // end class Keypad
11
12 #endif // KEYPAD_H

Fig. 26.18 | Keypad class definition.

Fig. 26.17 | Screen class member-function definitions. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 25 Tuesday, February 28, 2017 4:31 PM

26_26 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Keypad Class Member-Function Definition
In the Keypad implementation file (Fig. 26.19), member function getInput (defined in
lines 9–14) uses the standard input stream cin and the stream extraction operator (>>) to
obtain input from the user. Line 11 declares a local variable to store the user’s input. Line
12 reads input into local variable input, then line 13 returns this value. Recall that get-
Input obtains all the input used by the ATM. Keypad’s getInput member function simply
returns the integer input by the user. If a client of class Keypad requires input that satisfies
some particular criteria (i.e., a number corresponding to a valid menu option), the client
must perform the appropriate error checking. [Note: Using the standard input stream cin
and the stream extraction operator (>>) allows noninteger input to be read from the user.
Because the real ATM’s keypad permits only integer input, however, we assume that the
user enters an integer and do not attempt to fix problems caused by noninteger input.]

26.4.4 Class CashDispenser
Class CashDispenser (Figs. 26.20–26.21) represents the cash dispenser. Figure 26.20 con-
tains the function prototype for a default constructor (line 9). Class CashDispenser declares
two additional public member functions—dispenseCash (line 12) and isSufficient-
CashAvailable (line 15). The class trusts that a client (i.e., Withdrawal) calls dispenseCash
only after establishing that sufficient cash is available by calling isSufficientCashAvail-
able. Thus, dispenseCash simply simulates dispensing the requested amount without
checking whether sufficient cash is available. Line 17 declares private constant INI-
TIAL_COUNT, which indicates the initial count of bills in the cash dispenser when the ATM
starts (i.e., 500). Line 18 implements attribute count (modeled in Fig. 26.11), which keeps
track of the number of bills remaining in the CashDispenser at any time.

1 // Keypad.cpp
2 // Member-function definition for class Keypad (the ATM's keypad).
3 #include <iostream>
4 using namespace std;
5
6 #include "Keypad.h" // Keypad class definition
7
8 // return an integer value entered by user
9 int Keypad::getInput() const

10 {
11 int input; // variable to store the input
12 cin >> input; // we assume that user enters an integer
13 return input; // return the value entered by user
14 } // end function getInput

Fig. 26.19 | Keypad class member-function definition.

1 // CashDispenser.h
2 // CashDispenser class definition. Represents the ATM's cash dispenser.
3 #ifndef CASH_DISPENSER_H
4 #define CASH_DISPENSER_H

Fig. 26.20 | CashDispenser class definition. (Part 1 of 2.)

cpphtp10_26_ATM2.fm Page 26 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_27

CashDispenser Class Member-Function Definitions
Figure 26.21 contains the definitions of class CashDispenser’s member functions. The
constructor (lines 6–9) sets count to the initial count (i.e., 500). Member function
dispenseCash (lines 13–17) simulates cash dispensing. If our system were hooked up to a
real hardware cash dispenser, this member function would interact with the hardware de-
vice to physically dispense cash. Our simulated version of the member function simply de-
creases the count of bills remaining by the number required to dispense the specified
amount (line 16). Line 15 calculates the number of $20 bills required to dispense the spec-
ified amount. The ATM allows the user to choose only withdrawal amounts that are mul-
tiples of $20, so we divide amount by 20 to obtain the number of billsRequired. Also,
it’s the responsibility of the class’s client (i.e., Withdrawal) to inform the user that cash has
been dispensed—CashDispenser cannot interact directly with Screen.

5
6 class CashDispenser
7 {
8 public:
9 CashDispenser(); // constructor initializes bill count to 500

10
11 // simulates dispensing of specified amount of cash
12 void dispenseCash(int);
13
14 // indicates whether cash dispenser can dispense desired amount
15 bool isSufficientCashAvailable(int) const;
16 private:
17 static const int INITIAL_COUNT = 500;
18 int count; // number of $20 bills remaining
19 }; // end class CashDispenser
20
21 #endif // CASH_DISPENSER_H

22 // CashDispenser.cpp
23 // Member-function definitions for class CashDispenser.
24 #include "CashDispenser.h" // CashDispenser class definition
25
26 // CashDispenser default constructor initializes count to default
27 CashDispenser::CashDispenser()
28 {
29 count = INITIAL_COUNT; // set count attribute to default
30 } // end CashDispenser default constructor
31
32 // simulates dispensing of specified amount of cash; assumes enough cash
33 // is available (previous call to isSufficientCashAvailable returned true)
34 void CashDispenser::dispenseCash(int amount)
35 {
36 int billsRequired = amount / 20; // number of $20 bills required
37 count -= billsRequired; // update the count of bills
38 } // end function dispenseCash

Fig. 26.21 | CashDispenser class member-function definitions. (Part 1 of 2.)

Fig. 26.20 | CashDispenser class definition. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 27 Tuesday, February 28, 2017 4:31 PM

26_28 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Member function isSufficientCashAvailable (lines 20–28) has a parameter
amount that specifies the amount of cash in question. Lines 24–27 return true if the Cash-
Dispenser’s count is greater than or equal to billsRequired (i.e., enough bills are avail-
able) and false otherwise (i.e., not enough bills). For example, if a user wishes to
withdraw $80 (i.e., billsRequired is 4), but only three bills remain (i.e., count is 3), the
member function returns false.

26.4.5 Class DepositSlot
Class DepositSlot (Figs. 26.22–26.23) represents the deposit slot of the ATM. Like the
version of class CashDispenser presented here, this version of class DepositSlot merely
simulates the functionality of a real hardware deposit slot. DepositSlot has no data mem-
bers and only one member function—isEnvelopeReceived (declared in line 9 of
Fig. 26.22 and defined in lines 7–10 of Fig. 26.23)—that indicates whether a deposit en-
velope was received.

39
40 // indicates whether cash dispenser can dispense desired amount
41 bool CashDispenser::isSufficientCashAvailable(int amount) const
42 {
43 int billsRequired = amount / 20; // number of $20 bills required
44
45 if (count >= billsRequired)
46 return true; // enough bills are available
47 else
48 return false; // not enough bills are available
49 } // end function isSufficientCashAvailable

1 // DepositSlot.h
2 // DepositSlot class definition. Represents the ATM's deposit slot.
3 #ifndef DEPOSIT_SLOT_H
4 #define DEPOSIT_SLOT_H
5
6 class DepositSlot
7 {
8 public:
9 bool isEnvelopeReceived() const; // tells whether envelope was received

10 }; // end class DepositSlot
11
12 #endif // DEPOSIT_SLOT_H

Fig. 26.22 | DepositSlot class definition.

1 // DepositSlot.cpp
2 // Member-function definition for class DepositSlot.
3 #include "DepositSlot.h" // DepositSlot class definiton

Fig. 26.23 | DepositSlot class member-function definition. (Part 1 of 2.)

Fig. 26.21 | CashDispenser class member-function definitions. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 28 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_29

Recall from the requirements specification that the ATM allows the user up to two
minutes to insert an envelope. The current version of member function isEnvelope-
Received simply returns true immediately (line 9 of Fig. 26.23), because this is only a
software simulation, and we assume that the user has inserted an envelope within the
required time frame. If an actual hardware deposit slot were connected to our system,
member function isEnvelopeReceived might be implemented to wait for a maximum of
two minutes to receive a signal from the hardware deposit slot indicating that the user has
indeed inserted a deposit envelope. If isEnvelopeReceived were to receive such a signal
within two minutes, the member function would return true. If two minutes elapsed and
the member function still had not received a signal, then the member function would
return false.

26.4.6 Class Account
Class Account (Figs. 26.24–26.25) represents a bank account. Lines 9–15 in the class defi-
nition (Fig. 26.24) contain function prototypes for the class’s constructor and six member
functions, which we discuss shortly. Each Account has four attributes (modeled in
Fig. 26.11)—accountNumber, pin, availableBalance and totalBalance. Lines 17–20
implement these attributes as private data members. Data member availableBalance
represents the amount of funds available for withdrawal. Data member totalBalance rep-
resents the amount of funds available, plus the amount of deposited funds still pending
confirmation or clearance.

4
5 // indicates whether envelope was received (always returns true,
6 // because this is only a software simulation of a real deposit slot)
7 bool DepositSlot::isEnvelopeReceived() const
8 {
9 return true; // deposit envelope was received

10 } // end function isEnvelopeReceived

1 // Account.h
2 // Account class definition. Represents a bank account.
3 #ifndef ACCOUNT_H
4 #define ACCOUNT_H
5
6 class Account
7 {
8 public:
9 Account(int, int, double, double); // constructor sets attributes

10 bool validatePIN(int) const; // is user-specified PIN correct?
11 double getAvailableBalance() const; // returns available balance
12 double getTotalBalance() const; // returns total balance
13 void credit(double); // adds an amount to the Account balance
14 void debit(double); // subtracts an amount from the Account balance
15 int getAccountNumber() const; // returns account number

Fig. 26.24 | Account class definition. (Part 1 of 2.)

Fig. 26.23 | DepositSlot class member-function definition. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 29 Tuesday, February 28, 2017 4:31 PM

26_30 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Account Class Member-Function Definitions
Figure 26.25 presents the definitions of class Account’s member functions. The class’s
constructor (lines 6–14) takes an account number, the PIN established for the account,
the initial available balance and the initial total balance as arguments. Lines 8–11 assign
these values to the class’s data members using member initializers.

Member function validatePIN (lines 17–23) determines whether a user-specified
PIN (i.e., parameter userPIN) matches the PIN associated with the account (i.e., data
member pin). Recall that we modeled this member function’s parameter userPIN in the
UML class diagram of Fig. 25.19. If the two PINs match, the member function returns
true (line 20); otherwise, it returns false (line 22).

Member functions getAvailableBalance (lines 26–29) and getTotalBalance (lines
32–35) are get functions that return the values of double data members availableBal-
ance and totalBalance, respectively.

Member function credit (lines 38–41) adds an amount of money (i.e., parameter
amount) to an Account as part of a deposit transaction. Note that this member function
adds the amount only to data member totalBalance (line 40). The money credited to an
account during a deposit does not become available immediately, so we modify only the
total balance. We assume that the bank updates the available balance appropriately at a
later time. Our implementation of class Account includes only member functions required
for carrying out ATM transactions. Therefore, we omit the member functions that some
other bank system would invoke to add to data member availableBalance (to confirm a
deposit) or subtract from data member totalBalance (to reject a deposit).

16 private:
17 int accountNumber; // account number
18 int pin; // PIN for authentication
19 double availableBalance; // funds available for withdrawal
20 double totalBalance; // funds available + funds waiting to clear
21 }; // end class Account
22
23 #endif // ACCOUNT_H

1 // Account.cpp
2 // Member-function definitions for class Account.
3 #include "Account.h" // Account class definition
4
5 // Account constructor initializes attributes
6 Account::Account(int theAccountNumber, int thePIN,
7 double theAvailableBalance, double theTotalBalance)
8 : accountNumber(theAccountNumber),
9 pin(thePIN),

10 availableBalance(theAvailableBalance),
11 totalBalance(theTotalBalance)
12 {
13 // empty body
14 } // end Account constructor

Fig. 26.25 | Account class member-function definitions. (Part 1 of 2.)

Fig. 26.24 | Account class definition. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 30 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_31

Member function debit (lines 44–48) subtracts an amount of money (i.e., parameter
amount) from an Account as part of a withdrawal transaction. This member function sub-
tracts the amount from both data member availableBalance (line 46) and data member
totalBalance (line 47), because a withdrawal affects both measures of an account balance.

Member function getAccountNumber (lines 51–54) provides access to an Account’s
accountNumber. We include this member function in our implementation so that a client
of the class (i.e., BankDatabase) can identify a particular Account. For example, BankDa-
tabase contains many Account objects, and it can invoke this member function on each
of its Account objects to locate the one with a specific account number.

15
16 // determines whether a user-specified PIN matches PIN in Account
17 bool Account::validatePIN(int userPIN) const
18 {
19 if (userPIN == pin)
20 return true;
21 else
22 return false;
23 } // end function validatePIN
24
25 // returns available balance
26 double Account::getAvailableBalance() const
27 {
28 return availableBalance;
29 } // end function getAvailableBalance
30
31 // returns the total balance
32 double Account::getTotalBalance() const
33 {
34 return totalBalance;
35 } // end function getTotalBalance
36
37 // credits an amount to the account
38 void Account::credit(double amount)
39 {
40 totalBalance += amount; // add to total balance
41 } // end function credit
42
43 // debits an amount from the account
44 void Account::debit(double amount)
45 {
46 availableBalance -= amount; // subtract from available balance
47 totalBalance -= amount; // subtract from total balance
48 } // end function debit
49
50 // returns account number
51 int Account::getAccountNumber() const
52 {
53 return accountNumber;
54 } // end function getAccountNumber

Fig. 26.25 | Account class member-function definitions. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 31 Tuesday, February 28, 2017 4:31 PM

26_32 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

26.4.7 Class BankDatabase
Class BankDatabase (Figs. 26.26–26.27) models the bank’s database with which the ATM
interacts to access and modify a user’s account information. The class definition
(Fig. 26.26) declares function prototypes for the class’s constructor and several member
functions. We discuss these momentarily. The class definition also declares the BankData-
base’s data members. We determine one data member for class BankDatabase based on
its composition relationship with class Account. Recall from Fig. 26.10 that a BankData-
base is composed of zero or more objects of class Account. Line 24 of Fig. 26.26 imple-
ments data member accounts—a vector of Account objects—to implement this
composition relationship. Lines 6–7 allow us to use vector in this file. Line 27 contains
the function prototype for a private utility function getAccount that allows the member
functions of the class to obtain a pointer to a specific Account in the accounts vector.

BankDatabase Class Member-Function Definitions
Figure 26.27 contains the member-function definitions for class BankDatabase. We im-
plement the class with a default constructor (lines 6–15) that adds Account objects to data
member accounts. For the sake of testing the system, we create two new Account objects

1 // BankDatabase.h
2 // BankDatabase class definition. Represents the bank's database.
3 #ifndef BANK_DATABASE_H
4 #define BANK_DATABASE_H
5
6 #include <vector> // class uses vector to store Account objects
7 using namespace std;
8
9 #include "Account.h" // Account class definition

10
11 class BankDatabase
12 {
13 public:
14 BankDatabase(); // constructor initializes accounts
15
16 // determine whether account number and PIN match those of an Account
17 bool authenticateUser(int, int); // returns true if Account authentic
18
19 double getAvailableBalance(int); // get an available balance
20 double getTotalBalance(int); // get an Account's total balance
21 void credit(int, double); // add amount to Account balance
22 void debit(int, double); // subtract amount from Account balance
23 private:
24 vector< Account > accounts; // vector of the bank's Accounts
25
26 // private utility function
27 Account * getAccount(int); // get pointer to Account object
28 }; // end class BankDatabase
29
30 #endif // BANK_DATABASE_H

Fig. 26.26 | BankDatabase class definition.

cpphtp10_26_ATM2.fm Page 32 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_33

with test data (lines 9–10), then add them to the end of the vector (lines 13–14). The
Account constructor has four parameters—the account number, the PIN assigned to the
account, the initial available balance and the initial total balance.

1 // BankDatabase.cpp
2 // Member-function definitions for class BankDatabase.
3 #include "BankDatabase.h" // BankDatabase class definition
4
5 // BankDatabase default constructor initializes accounts
6 BankDatabase::BankDatabase()
7 {
8 // create two Account objects for testing
9 Account account1(12345, 54321, 1000.0, 1200.0);

10 Account account2(98765, 56789, 200.0, 200.0);
11
12 // add the Account objects to the vector accounts
13 accounts.push_back(account1); // add account1 to end of vector
14 accounts.push_back(account2); // add account2 to end of vector
15 } // end BankDatabase default constructor
16
17 // retrieve Account object containing specified account number
18 Account * BankDatabase::getAccount(int accountNumber)
19 {
20 // loop through accounts searching for matching account number
21 for (size_t i = 0; i < accounts.size(); i++)
22 {
23 // return current account if match found
24 if (accounts[i].getAccountNumber() == accountNumber)
25 return &accounts[i];
26 } // end for
27
28 return NULL; // if no matching account was found, return NULL
29 } // end function getAccount
30
31 // determine whether user-specified account number and PIN match
32 // those of an account in the database
33 bool BankDatabase::authenticateUser(int userAccountNumber,
34 int userPIN)
35 {
36 // attempt to retrieve the account with the account number
37 Account * const userAccountPtr = getAccount(userAccountNumber);
38
39 // if account exists, return result of Account function validatePIN
40 if (userAccountPtr != NULL)
41 return userAccountPtr->validatePIN(userPIN);
42 else
43 return false; // account number not found, so return false
44 } // end function authenticateUser
45
46 // return available balance of Account with specified account number
47 double BankDatabase::getAvailableBalance(int userAccountNumber)
48 {

Fig. 26.27 | BankDatabase class member-function definitions. (Part 1 of 2.)

cpphtp10_26_ATM2.fm Page 33 Tuesday, February 28, 2017 4:31 PM

26_34 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Recall that class BankDatabase serves as an intermediary between class ATM and the
actual Account objects that contain users’ account information. Thus, the member func-
tions of class BankDatabase do nothing more than invoke the corresponding member
functions of the Account object belonging to the current ATM user.

We include private utility function getAccount (lines 18–29) to allow the Bank-
Database to obtain a pointer to a particular Account within vector accounts. To locate
the user’s Account, the BankDatabase compares the value returned by member function
getAccountNumber for each element of accounts to a specified account number until it
finds a match. Lines 21–26 traverse the accounts vector. If the account number of the
current Account (i.e., accounts[i]) equals the value of parameter accountNumber, the
member function immediately returns the address of the current Account (i.e., a pointer
to the current Account). If no account has the given account number, then line 28 returns
NULL. Note that this member function must return a pointer, as opposed to a reference,
because there is the possibility that the return value could be NULL—a reference cannot be
NULL, but a pointer can.

Note that vector function size (invoked in the loop-continuation condition in line
21) returns the number of elements in a vector as a value of type size_t (which is usually
unsigned int). As a result, we declare the control variable i to be of type size_t, too. On
some compilers, declaring i as an int would cause the compiler to issue a warning mes-
sage, because the loop-continuation condition would compare a signed value (i.e., an int)
and an unsigned value (i.e., a value of type size_t).

Member function authenticateUser (lines 33–44) proves or disproves the an ATM
user’s identity. This function takes a user-specified account number and user-specified

49 Account * const userAccountPtr = getAccount(userAccountNumber);
50 return userAccountPtr->getAvailableBalance();
51 } // end function getAvailableBalance
52
53 // return total balance of Account with specified account number
54 double BankDatabase::getTotalBalance(int userAccountNumber)
55 {
56 Account * const userAccountPtr = getAccount(userAccountNumber);
57 return userAccountPtr->getTotalBalance();
58 } // end function getTotalBalance
59
60 // credit an amount to Account with specified account number
61 void BankDatabase::credit(int userAccountNumber, double amount)
62 {
63 Account * const userAccountPtr = getAccount(userAccountNumber);
64 userAccountPtr->credit(amount);
65 } // end function credit
66
67 // debit an amount from Account with specified account number
68 void BankDatabase::debit(int userAccountNumber, double amount)
69 {
70 Account * const userAccountPtr = getAccount(userAccountNumber);
71 userAccountPtr->debit(amount);
72 } // end function debit

Fig. 26.27 | BankDatabase class member-function definitions. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 34 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_35

PIN as arguments and indicates whether they match the account number and PIN of an
Account in the database. Line 37 calls utility function getAccount, which returns either a
pointer to an Account with userAccountNumber as its account number or NULL to indicate
that userAccountNumber is invalid. We declare userAccountPtr to be a const pointer
because, once the member function aims this pointer at the user’s Account, the pointer
should not change. If getAccount returns a pointer to an Account object, line 41 returns
the bool value returned by that object’s validatePIN member function. BankDatabase’s
authenticateUser member function does not perform the PIN comparison itself—
rather, it forwards userPIN to the Account object’s validatePIN member function to do
so. The value returned by Account member function validatePIN indicates whether the
user-specified PIN matches the PIN of the user’s Account, so member function authen-
ticateUser simply returns this value to the client of the class (i.e., ATM).

BankDatabase trusts the ATM to invoke member function authenticateUser and
receive a return value of true before allowing the user to perform transactions. BankData-
base also trusts that each Transaction object created by the ATM contains the valid account
number of the current authenticated user and that this is the account number passed to
the remaining BankDatabase member functions as argument userAccountNumber.
Member functions getAvailableBalance (lines 47–51), getTotalBalance (lines 54–58),
credit (lines 61–65) and debit (lines 68–72) therefore simply retrieve a pointer to the
user’s Account object with utility function getAccount, then use this pointer to invoke the
appropriate Account member function on the user’s Account object. We know that the
calls to getAccount within these member functions will never return NULL, because user-
AccountNumber must refer to an existing Account. Note that getAvailableBalance and
getTotalBalance return the values returned by the corresponding Account member func-
tions. Also, credit and debit simply redirect parameter amount to the Account member
functions they invoke.

26.4.8 Class Transaction
Class Transaction (Figs. 26.28–26.29) is an abstract base class that represents the notion
of an ATM transaction. It contains the common features of derived classes BalanceInqui-
ry, Withdrawal and Deposit. Figure 26.28 expands upon the Transaction header file
first developed in Section 26.3. Lines 13, 17–19 and 22 contain function prototypes for
the class’s constructor and four member functions, which we discuss shortly. Line 15 de-
fines a virtual destructor with an empty body—this makes all derived-class destructors
virtual (even those defined implicitly by the compiler) and ensures that dynamically al-
located derived-class objects get destroyed properly when they are deleted via a base-class
pointer. Lines 24–26 declare the class’s private data members. Recall from the class dia-
gram of Fig. 26.11 that class Transaction contains an attribute accountNumber (imple-
mented in line 24) that indicates the account involved in the Transaction. We derive data
members screen (line 25) and bankDatabase (line 26) from class Transaction’s associa-
tions modeled in Fig. 26.10—all transactions require access to the ATM’s screen and the
bank’s database, so we include references to a Screen and a BankDatabase as data members
of class Transaction. As you’ll soon see, Transaction’s constructor initializes these refer-
ences. The forward declarations in lines 6–7 signify that the header file contains references
to objects of classes Screen and BankDatabase, but that the definitions of these classes lie
outside the header file.

cpphtp10_26_ATM2.fm Page 35 Tuesday, February 28, 2017 4:31 PM

26_36 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

1 // Transaction.h
2 // Transaction abstract base class definition.
3 #ifndef TRANSACTION_H
4 #define TRANSACTION_H
5
6 class Screen; // forward declaration of class Screen
7 class BankDatabase; // forward declaration of class BankDatabase
8
9 class Transaction

10 {
11 public:
12 // constructor initializes common features of all Transactions
13 Transaction(int, Screen &, BankDatabase &);
14
15 virtual ~Transaction() { } // virtual destructor with empty body
16
17 int getAccountNumber() const; // return account number
18 Screen &getScreen() const; // return reference to screen
19 BankDatabase &getBankDatabase() const; // return reference to database
20
21 // pure virtual function to perform the transaction
22 virtual void execute() = 0; // overridden in derived classes
23 private:
24 int accountNumber; // indicates account involved
25 Screen &screen; // reference to the screen of the ATM
26 BankDatabase &bankDatabase; // reference to the account info database
27 }; // end class Transaction
28
29 #endif // TRANSACTION_H

Fig. 26.28 | Transaction class definition.

1 // Transaction.cpp
2 // Member-function definitions for class Transaction.
3 #include "Transaction.h" // Transaction class definition
4 #include "Screen.h" // Screen class definition
5 #include "BankDatabase.h" // BankDatabase class definition
6
7 // constructor initializes common features of all Transactions
8 Transaction::Transaction(int userAccountNumber, Screen &atmScreen,
9 BankDatabase &atmBankDatabase)

10 : accountNumber(userAccountNumber),
11 screen(atmScreen),
12 bankDatabase(atmBankDatabase)
13 {
14 // empty body
15 } // end Transaction constructor
16
17 // return account number
18 int Transaction::getAccountNumber() const
19 {

Fig. 26.29 | Transaction class member-function definitions. (Part 1 of 2.)

cpphtp10_26_ATM2.fm Page 36 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_37

Class Transaction has a constructor (declared in line 13 of Fig. 26.28 and defined in
lines 8–15 of Fig. 26.29) that takes the current user’s account number and references to
the ATM’s screen and the bank’s database as arguments. Because Transaction is an
abstract class, this constructor will never be called directly to instantiate Transaction
objects. Instead, the constructors of the Transaction derived classes will use base-class ini-
tializer syntax to invoke this constructor.

Class Transaction has three public get functions—getAccountNumber (declared in
line 17 of Fig. 26.28 and defined in lines 18–21 of Fig. 26.29), getScreen (declared in
line 18 of Fig. 26.28 and defined in lines 24–27 of Fig. 26.29) and getBankDatabase
(declared in line 19 of Fig. 26.28 and defined in lines 30–33 of Fig. 26.29). Transaction
derived classes inherit these member functions from Transaction and use them to gain
access to class Transaction’s private data members.

Class Transaction also declares a pure virtual function execute (line 22 of
Fig. 26.28). It does not make sense to provide an implementation for this member func-
tion, because a generic transaction cannot be executed. Thus, we declare this member
function to be a pure virtual function and force each Transaction derived class to pro-
vide its own concrete implementation that executes that particular type of transaction.

26.4.9 Class BalanceInquiry
Class BalanceInquiry (Figs. 26.30–26.31) derives from abstract base class Transaction
and represents a balance-inquiry ATM transaction. BalanceInquiry does not have any
data members of its own, but it inherits Transaction data members accountNumber,
screen and bankDatabase, which are accessible through Transaction’s public get func-
tions. Line 6 #includes the definition of base class Transaction. The BalanceInquiry
constructor (declared in line 11 of Fig. 26.30 and defined in lines 8–13 of Fig. 26.31)
takes arguments corresponding to the Transaction data members and simply forwards
them to Transaction’s constructor, using base-class initializer syntax (line 10 of
Fig. 26.31). Line 12 of Fig. 26.30 contains the function prototype for member function
execute, which is required to indicate the intention to override the base class’s pure vir-
tual function of the same name.

20 return accountNumber;
21 } // end function getAccountNumber
22
23 // return reference to screen
24 Screen &Transaction::getScreen() const
25 {
26 return screen;
27 } // end function getScreen
28
29 // return reference to bank database
30 BankDatabase &Transaction::getBankDatabase() const
31 {
32 return bankDatabase;
33 } // end function getBankDatabase

Fig. 26.29 | Transaction class member-function definitions. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 37 Tuesday, February 28, 2017 4:31 PM

26_38 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

1 // BalanceInquiry.h
2 // BalanceInquiry class definition. Represents a balance inquiry.
3 #ifndef BALANCE_INQUIRY_H
4 #define BALANCE_INQUIRY_H
5
6 #include "Transaction.h" // Transaction class definition
7
8 class BalanceInquiry : public Transaction
9 {

10 public:
11 BalanceInquiry(int, Screen &, BankDatabase &); // constructor
12 virtual void execute(); // perform the transaction
13 }; // end class BalanceInquiry
14
15 #endif // BALANCE_INQUIRY_H

Fig. 26.30 | BalanceInquiry class definition.

1 // BalanceInquiry.cpp
2 // Member-function definitions for class BalanceInquiry.
3 #include "BalanceInquiry.h" // BalanceInquiry class definition
4 #include "Screen.h" // Screen class definition
5 #include "BankDatabase.h" // BankDatabase class definition
6
7 // BalanceInquiry constructor initializes base-class data members
8 BalanceInquiry:: BalanceInquiry(int userAccountNumber, Screen &atmScreen,
9 BankDatabase &atmBankDatabase)

10 : Transaction(userAccountNumber, atmScreen, atmBankDatabase)
11 {
12 // empty body
13 } // end BalanceInquiry constructor
14
15 // performs transaction; overrides Transaction's pure virtual function
16 void BalanceInquiry::execute()
17 {
18 // get references to bank database and screen
19 BankDatabase &bankDatabase = getBankDatabase();
20 Screen &screen = getScreen();
21
22 // get the available balance for the current user's Account
23 double availableBalance =
24 bankDatabase.getAvailableBalance(getAccountNumber());
25
26 // get the total balance for the current user's Account
27 double totalBalance =
28 bankDatabase.getTotalBalance(getAccountNumber());
29
30 // display the balance information on the screen
31 screen.displayMessageLine("\nBalance Information:");
32 screen.displayMessage(" - Available balance: ");
33 screen.displayDollarAmount(availableBalance);

Fig. 26.31 | BalanceInquiry class member-function definitions. (Part 1 of 2.)

cpphtp10_26_ATM2.fm Page 38 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_39

Class BalanceInquiry overrides Transaction’s pure virtual function execute to pro-
vide a concrete implementation (lines 16–37 of Fig. 26.31) that performs the steps involved
in a balance inquiry. Lines 19–20 get references to the bank database and the ATM’s screen
by invoking member functions inherited from base class Transaction. Lines 23–24 retrieve
the available balance of the account involved by invoking member function getAvailable-
Balance of bankDatabase. Line 24 uses inherited member function getAccountNumber to
get the account number of the current user, which it then passes to getAvailableBalance.
Lines 27–28 retrieve the total balance of the current user’s account. Lines 31–36 display the
balance information on the ATM’s screen. Recall that displayDollarAmount takes a double
argument and outputs it to the screen formatted as a dollar amount. For example, if a user’s
availableBalance is 700.5, line 33 outputs $700.50. Line 36 inserts a blank line of output
to separate the balance information from subsequent output (i.e., the main menu repeated
by class ATM after executing the BalanceInquiry).

26.4.10 Class Withdrawal
Class Withdrawal (Figs. 26.32–26.33) derives from Transaction and represents a with-
drawal ATM transaction. Figure 26.32 expands upon the header file for this class devel-
oped in Fig. 26.13. Class Withdrawal has a constructor and one member function
execute, which we discuss shortly. Recall from the class diagram of Fig. 26.11 that class
Withdrawal has one attribute, amount, which line 16 implements as an int data member.
Figure 26.10 models associations between class Withdrawal and classes Keypad and Cash-
Dispenser, for which lines 17–18 implement references keypad and cashDispenser, re-
spectively. Line 19 is the function prototype of a private utility function that we soon
discuss.

34 screen.displayMessage("\n - Total balance: ");
35 screen.displayDollarAmount(totalBalance);
36 screen.displayMessageLine("");
37 } // end function execute

1 // Withdrawal.h
2 // Withdrawal class definition. Represents a withdrawal transaction.
3 #ifndef WITHDRAWAL_H
4 #define WITHDRAWAL_H
5
6 #include "Transaction.h" // Transaction class definition
7 class Keypad; // forward declaration of class Keypad
8 class CashDispenser; // forward declaration of class CashDispenser
9

10 class Withdrawal : public Transaction
11 {
12 public:
13 Withdrawal(int, Screen &, BankDatabase &, Keypad &, CashDispenser &);
14 virtual void execute(); // perform the transaction

Fig. 26.32 | Withdrawal class definition. (Part 1 of 2.)

Fig. 26.31 | BalanceInquiry class member-function definitions. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 39 Tuesday, February 28, 2017 4:31 PM

26_40 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Withdrawal Class Member-Function Definitions
Figure 26.33 contains the member-function definitions for class Withdrawal. Line 3 #in-
cludes the class’s definition, and lines 4–7 #include the definitions of the other classes
used in Withdrawal’s member functions. Line 11 declares a global constant corresponding
to the cancel option on the withdrawal menu. We’ll soon discuss how the class uses this
constant.

15 private:
16 int amount; // amount to withdraw
17 Keypad &keypad; // reference to ATM's keypad
18 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
19 int displayMenuOfAmounts() const; // display the withdrawal menu
20 }; // end class Withdrawal
21
22 #endif // WITHDRAWAL_H

1 // Withdrawal.cpp
2 // Member-function definitions for class Withdrawal.
3 #include "Withdrawal.h" // Withdrawal class definition
4 #include "Screen.h" // Screen class definition
5 #include "BankDatabase.h" // BankDatabase class definition
6 #include "Keypad.h" // Keypad class definition
7 #include "CashDispenser.h" // CashDispenser class definition
8
9 // global constant that corresponds to menu option to cancel

10 static const int CANCELED = 6;
11
12 // Withdrawal constructor initialize class's data members
13 Withdrawal::Withdrawal(int userAccountNumber, Screen &atmScreen,
14 BankDatabase &atmBankDatabase, Keypad &atmKeypad,
15 CashDispenser &atmCashDispenser)
16 : Transaction(userAccountNumber, atmScreen, atmBankDatabase),
17 keypad(atmKeypad), cashDispenser(atmCashDispenser)
18 {
19 // empty body
20 } // end Withdrawal constructor
21
22 // perform transaction; overrides Transaction's pure virtual function
23 void Withdrawal::execute()
24 {
25 bool cashDispensed = false; // cash was not dispensed yet
26 bool transactionCanceled = false; // transaction was not canceled yet
27
28 // get references to bank database and screen
29 BankDatabase &bankDatabase = getBankDatabase();
30 Screen &screen = getScreen();
31

Fig. 26.33 | Withdrawal class member-function definitions. (Part 1 of 3.)

Fig. 26.32 | Withdrawal class definition. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 40 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_41

32 // loop until cash is dispensed or the user cancels
33 do
34 {
35 // obtain the chosen withdrawal amount from the user
36 int selection = displayMenuOfAmounts();
37
38 // check whether user chose a withdrawal amount or canceled
39 if (selection != CANCELED)
40 {
41 amount = selection; // set amount to the selected dollar amount
42
43 // get available balance of account involved
44 double availableBalance =
45 bankDatabase.getAvailableBalance(getAccountNumber());
46
47 // check whether the user has enough money in the account
48 if (amount <= availableBalance)
49 {
50 // check whether the cash dispenser has enough money
51 if (cashDispenser.isSufficientCashAvailable(amount))
52 {
53 // update the account involved to reflect withdrawal
54 bankDatabase.debit(getAccountNumber(), amount);
55
56 cashDispenser.dispenseCash(amount); // dispense cash
57 cashDispensed = true; // cash was dispensed
58
59 // instruct user to take cash
60 screen.displayMessageLine(
61 "\nPlease take your cash from the cash dispenser.");
62 } // end if
63 else // cash dispenser does not have enough cash
64 screen.displayMessageLine(
65 "\nInsufficient cash available in the ATM."
66 "\n\nPlease choose a smaller amount.");
67 } // end if
68 else // not enough money available in user's account
69 {
70 screen.displayMessageLine(
71 "\nInsufficient funds in your account."
72 "\n\nPlease choose a smaller amount.");
73 } // end else
74 } // end if
75 else // user chose cancel menu option
76 {
77 screen.displayMessageLine("\nCanceling transaction...");
78 transactionCanceled = true; // user canceled the transaction
79 } // end else
80 } while (!cashDispensed && !transactionCanceled); // end do...while
81 } // end function execute
82

Fig. 26.33 | Withdrawal class member-function definitions. (Part 2 of 3.)

cpphtp10_26_ATM2.fm Page 41 Tuesday, February 28, 2017 4:31 PM

26_42 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

Class Withdrawal’s constructor (defined in lines 13–20 of Fig. 26.33) has five param-
eters. It uses a base-class initializer in line 16 to pass parameters userAccountNumber, atm-
Screen and atmBankDatabase to base class Transaction’s constructor to set the data
members that Withdrawal inherits from Transaction. The constructor also takes refer-

83 // display a menu of withdrawal amounts and the option to cancel;
84 // return the chosen amount or 0 if the user chooses to cancel
85 int Withdrawal::displayMenuOfAmounts() const
86 {
87 int userChoice = 0; // local variable to store return value
88
89 Screen &screen = getScreen(); // get screen reference
90
91 // array of amounts to correspond to menu numbers
92 int amounts[] = { 0, 20, 40, 60, 100, 200 };
93
94 // loop while no valid choice has been made
95 while (userChoice == 0)
96 {
97 // display the menu
98 screen.displayMessageLine("\nWithdrawal options:");
99 screen.displayMessageLine("1 - $20");
100 screen.displayMessageLine("2 - $40");
101 screen.displayMessageLine("3 - $60");
102 screen.displayMessageLine("4 - $100");
103 screen.displayMessageLine("5 - $200");
104 screen.displayMessageLine("6 - Cancel transaction");
105 screen.displayMessage("\nChoose a withdrawal option (1-6): ");
106
107 int input = keypad.getInput(); // get user input through keypad
108
109 // determine how to proceed based on the input value
110 switch (input)
111 {
112 case 1: // if the user chose a withdrawal amount
113 case 2: // (i.e., chose option 1, 2, 3, 4 or 5), return the
114 case 3: // corresponding amount from amounts array
115 case 4:
116 case 5:
117 userChoice = amounts[input]; // save user's choice
118 break;
119 case CANCELED: // the user chose to cancel
120 userChoice = CANCELED; // save user's choice
121 break;
122 default: // the user did not enter a value from 1-6
123 screen.displayMessageLine(
124 "\nIvalid selection. Try again.");
125 } // end switch
126 } // end while
127
128 return userChoice; // return withdrawal amount or CANCELED
129 } // end function displayMenuOfAmounts

Fig. 26.33 | Withdrawal class member-function definitions. (Part 3 of 3.)

cpphtp10_26_ATM2.fm Page 42 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_43

ences atmKeypad and atmCashDispenser as parameters and assigns them to reference data
members keypad and cashDispenser using member initializers (line 17).

Class Withdrawal overrides Transaction’s pure virtual function execute with a
concrete implementation (lines 23–81) that performs the steps involved in a withdrawal.
Line 25 declares and initializes a local bool variable cashDispensed. This variable indi-
cates whether cash has been dispensed (i.e., whether the transaction has completed success-
fully) and is initially false. Line 26 declares and initializes to false a bool variable
transactionCanceled that indicates whether the transaction has been canceled by the
user. Lines 29–30 get references to the bank database and the ATM’s screen by invoking
member functions inherited from base class Transaction.

Lines 33–80 contain a do…while statement that executes its body until cash is dis-
pensed (i.e., until cashDispensed becomes true) or until the user chooses to cancel (i.e.,
until transactionCanceled becomes true). This loop continuously returns the user to
the start of the transaction if an error occurs (i.e., the requested withdrawal amount is
greater than the user’s available balance or greater than the amount of cash in the cash dis-
penser). Line 36 displays a menu of withdrawal amounts and obtains a user selection by
calling private utility function displayMenuOfAmounts (defined in lines 85–129). This
function displays the menu of amounts and returns either an int withdrawal amount or
the int constant CANCELED to indicate that the user has chosen to cancel the transaction.

Member function displayMenuOfAmounts (lines 85–129) first declares local variable
userChoice (initially 0) to store the value that the member function will return (line 87).
Line 89 gets a reference to the screen by calling member function getScreen inherited
from base class Transaction. Line 92 declares an integer array of withdrawal amounts that
correspond to the amounts displayed in the withdrawal menu. We ignore the first element
in the array (index 0) because the menu has no option 0. The while statement in lines 95–
126 repeats until userChoice takes on a value other than 0. We’ll see shortly that this
occurs when the user makes a valid selection from the menu. Lines 98–105 display the
withdrawal menu on the screen and prompt the user to enter a choice. Line 107 obtains
integer input through the keypad. The switch statement in lines 110–125 determines
how to proceed based on the user’s input. If the user selects a number between 1 and 5,
line 117 sets userChoice to the value of the element in amounts at index input. For
example, if the user enters 3 to withdraw $60, line 117 sets userChoice to the value of
amounts[3] (i.e., 60). Line 118 terminates the switch. Variable userChoice no longer
equals 0, so the while in lines 95–126 terminates and line 128 returns userChoice. If the
user selects the cancel menu option, lines 120–121 execute, setting userChoice to CAN-
CELED and causing the member function to return this value. If the user does not enter a
valid menu selection, lines 123–124 display an error message and the user is returned to
the withdrawal menu.

The if statement in line 39 in member function execute determines whether the user
has selected a withdrawal amount or chosen to cancel. If the user cancels, lines 77–78 exe-
cute to display an appropriate message to the user and set transactionCanceled to true.
This causes the loop-continuation test in line 80 to fail and control to return to the calling
member function (i.e., ATM member function performTransactions). If the user has
chosen a withdrawal amount, line 41 assigns local variable selection to data member
amount. Lines 44–45 retrieve the available balance of the current user’s Account and store
it in a local double variable availableBalance. Next, the if statement in line 48 deter-

cpphtp10_26_ATM2.fm Page 43 Tuesday, February 28, 2017 4:31 PM

26_44 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

mines whether the selected amount is less than or equal to the user’s available balance. If
it isn’t, lines 70–72 display an appropriate error message. Control then continues to the
end of the do…while, and the loop repeats because both cashDispensed and transac-
tionCanceled are still false. If the user’s balance is high enough, the if statement in line
51 determines whether the cash dispenser has enough money to satisfy the withdrawal
request by invoking the cashDispenser’s isSufficientCashAvailable member func-
tion. If this member function returns false, lines 64–66 display an appropriate error mes-
sage and the do…while repeats. If sufficient cash is available, then the requirements for
the withdrawal are satisfied, and line 54 debits amount from the user’s account in the data-
base. Lines 56–57 then instruct the cash dispenser to dispense the cash to the user and set
cashDispensed to true. Finally, lines 60–61 display a message to the user that cash has
been dispensed. Because cashDispensed is now true, control continues after the
do…while. No additional statements appear below the loop, so the member function
returns control to class ATM.

In the function calls in lines 64–66 and lines 70–72, we divide the argument to
Screen member function displayMessageLine into two string literals, each placed on a
separate line in the program. We do so because each argument is too long to fit on a single
line. C++ concatenates (i.e., combines) string literals adjacent to each other, even if they are on
separate lines. For example, if you write "Happy " "Birthday" in a program, C++ will view
these two adjacent string literals as the single string literal "Happy Birthday". As a result,
when lines 64–66 execute, displayMessageLine receives a single string as a parameter,
even though the argument in the function call appears as two string literals.

26.4.11 Class Deposit
Class Deposit (Figs. 26.34–26.35) derives from Transaction and represents a deposit
ATM transaction. Figure 26.34 contains the Deposit class definition. Like derived classes
BalanceInquiry and Withdrawal, Deposit declares a constructor (line 13) and member
function execute (line 14)—we discuss these momentarily. Recall from the class diagram
of Fig. 26.11 that class Deposit has one attribute amount, which line 16 implements as an
int data member. Lines 17–18 create reference data members keypad and depositSlot
that implement the associations between class Deposit and classes Keypad and Deposit-
Slot modeled in Fig. 26.10. Line 19 contains the function prototype for a private utility
function promptForDepositAmount that we’ll discuss shortly.

1 // Deposit.h
2 // Deposit class definition. Represents a deposit transaction.
3 #ifndef DEPOSIT_H
4 #define DEPOSIT_H
5
6 #include "Transaction.h" // Transaction class definition
7 class Keypad; // forward declaration of class Keypad
8 class DepositSlot; // forward declaration of class DepositSlot
9

10 class Deposit : public Transaction
11 {

Fig. 26.34 | Deposit class definition. (Part 1 of 2.)

cpphtp10_26_ATM2.fm Page 44 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_45

Deposit Class Member-Function Definitions
Figure 26.35 presents the Deposit class implementation. Line 3 #includes the Deposit
class definition, and lines 4–7 #include the class definitions of the other classes used in
Deposit’s member functions. Line 9 declares a constant CANCELED that corresponds to the
value a user enters to cancel a deposit. We’ll soon discuss how the class uses this constant.

12 public:
13 Deposit(int, Screen &, BankDatabase &, Keypad &, DepositSlot &);
14 virtual void execute(); // perform the transaction
15 private:
16 double amount; // amount to deposit
17 Keypad &keypad; // reference to ATM's keypad
18 DepositSlot &depositSlot; // reference to ATM's deposit slot
19 double promptForDepositAmount() const; // get deposit amount from user
20 }; // end class Deposit
21
22 #endif // DEPOSIT_H

1 // Deposit.cpp
2 // Member-function definitions for class Deposit.
3 #include "Deposit.h" // Deposit class definition
4 #include "Screen.h" // Screen class definition
5 #include "BankDatabase.h" // BankDatabase class definition
6 #include "Keypad.h" // Keypad class definition
7 #include "DepositSlot.h" // DepositSlot class definition
8
9 static const int CANCELED = 0; // constant representing cancel option

10
11 // Deposit constructor initializes class's data members
12 Deposit::Deposit(int userAccountNumber, Screen &atmScreen,
13 BankDatabase &atmBankDatabase, Keypad &atmKeypad,
14 DepositSlot &atmDepositSlot)
15 : Transaction(userAccountNumber, atmScreen, atmBankDatabase),
16 keypad(atmKeypad), depositSlot(atmDepositSlot)
17 {
18 // empty body
19 } // end Deposit constructor
20
21 // performs transaction; overrides Transaction's pure virtual function
22 void Deposit::execute()
23 {
24 BankDatabase &bankDatabase = getBankDatabase(); // get reference
25 Screen &screen = getScreen(); // get reference
26
27 amount = promptForDepositAmount(); // get deposit amount from user
28
29 // check whether user entered a deposit amount or canceled
30 if (amount != CANCELED)
31 {

Fig. 26.35 | Deposit class member-function definitions. (Part 1 of 2.)

Fig. 26.34 | Deposit class definition. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 45 Tuesday, February 28, 2017 4:31 PM

26_46 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

32 // request deposit envelope containing specified amount
33 screen.displayMessage(
34 "\nPlease insert a deposit envelope containing ");
35 screen.displayDollarAmount(amount);
36 screen.displayMessageLine(" in the deposit slot.");
37
38 // receive deposit envelope
39 bool envelopeReceived = depositSlot.isEnvelopeReceived();
40
41 // check whether deposit envelope was received
42 if (envelopeReceived)
43 {
44 screen.displayMessageLine("\nYour envelope has been received."
45 "\nNOTE: The money deposited will not be available until we"
46 "\nverify the amount of any enclosed cash, and any enclosed "
47 "checks clear.");
48
49 // credit account to reflect the deposit
50 bankDatabase.credit(getAccountNumber(), amount);
51 } // end if
52 else // deposit envelope not received
53 {
54 screen.displayMessageLine("\nYou did not insert an "
55 "envelope, so the ATM has canceled your transaction.");
56 } // end else
57 } // end if
58 else // user canceled instead of entering amount
59 {
60 screen.displayMessageLine("\nCanceling transaction...");
61 } // end else
62 } // end function execute
63
64 // prompt user to enter a deposit amount in cents
65 double Deposit::promptForDepositAmount() const
66 {
67 Screen &screen = getScreen(); // get reference to screen
68
69 // display the prompt and receive input
70 screen.displayMessage("\nPlease enter a deposit amount in "
71 "CENTS (or 0 to cancel): ");
72 int input = keypad.getInput(); // receive input of deposit amount
73
74 // check whether the user canceled or entered a valid amount
75 if (input == CANCELED)
76 return CANCELED;
77 else
78 {
79 return static_cast< double >(input) / 100; // return dollar amount
80 } // end else
81 } // end function promptForDepositAmount

Fig. 26.35 | Deposit class member-function definitions. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 46 Tuesday, February 28, 2017 4:31 PM

26.4 ATM Case Study Implementation 26_47

Like class Withdrawal, class Deposit contains a constructor (lines 12–19) that passes
three parameters to base class Transaction’s constructor using a base-class initializer (line
15). The constructor also has parameters atmKeypad and atmDepositSlot, which it assigns
to its corresponding data members (line 16).

Member function execute (lines 22–62) overrides pure virtual function execute in
base class Transaction with a concrete implementation that performs the steps required
in a deposit transaction. Lines 24–25 get references to the database and the screen. Line
27 prompts the user to enter a deposit amount by invoking private utility function
promptForDepositAmount (defined in lines 65–81) and sets data member amount to the
value returned. Member function promptForDepositAmount asks the user to enter a
deposit amount as an integer number of cents (because the ATM’s keypad does not con-
tain a decimal point; this is consistent with many real ATMs) and returns the double value
representing the dollar amount to be deposited.

Line 67 in member function promptForDepositAmount gets a reference to the ATM’s
screen. Lines 70–71 display a message on the screen asking the user to input a deposit
amount as a number of cents or “0” to cancel the transaction. Line 72 receives the user’s
input from the keypad. The if statement in lines 75–80 determines whether the user has
entered a real deposit amount or chosen to cancel. If the user chooses to cancel, line 76
returns the constant CANCELED. Otherwise, line 79 returns the deposit amount after con-
verting from the number of cents to a dollar amount by casting input to a double, then
dividing by 100. For example, if the user enters 125 as the number of cents, line 79 returns
125.0 divided by 100, or 1.25—125 cents is $1.25.

The if statement in lines 30–61 in member function execute determines whether
the user has chosen to cancel the transaction instead of entering a deposit amount. If the
user cancels, line 60 displays an appropriate message, and the member function returns. If
the user enters a deposit amount, lines 33–36 instruct the user to insert a deposit envelope
with the correct amount. Recall that Screen member function displayDollarAmount out-
puts a double formatted as a dollar amount.

Line 39 sets a local bool variable to the value returned by depositSlot’s isEnvelope-
Received member function, indicating whether a deposit envelope has been received.
Recall that we coded isEnvelopeReceived (lines 7–10 of Fig. 26.23) to always return
true, because we are simulating the functionality of the deposit slot and assume that the
user always inserts an envelope. However, we code member function execute of class
Deposit to test for the possibility that the user does not insert an envelope—good software
engineering demands that programs account for all possible return values. Thus, class
Deposit is prepared for future versions of isEnvelopeReceived that could return false.
Lines 44–50 execute if the deposit slot receives an envelope. Lines 44–47 display an appro-
priate message to the user. Line 50 then credits the deposit amount to the user’s account
in the database. Lines 54–55 will execute if the deposit slot does not receive a deposit enve-
lope. In this case, we display a message to the user stating that the ATM has canceled the
transaction. The member function then returns without modifying the user’s account.

26.4.12 Test Program ATMCaseStudy.cpp
ATMCaseStudy.cpp (Fig. 26.36) is a simple C++ program that allows us to start, or “turn
on,” the ATM and test the implementation of our ATM system model. The program’s

cpphtp10_26_ATM2.fm Page 47 Tuesday, February 28, 2017 4:31 PM

26_48 Chapter 26 ATM Case Study, Part 2: Implementing an Object-Oriented De-

main function (lines 6–11) does nothing more than instantiate a new ATM object named
atm (line 8) and invoke its run member function (line 9) to start the ATM.

26.5 Wrap-Up
In this chapter, you used inheritance to tune the design of the ATM software system, and
you fully implemented the ATM in C++. Congratulations on completing the entire ATM
case study! We hope you found this experience to be valuable and that it reinforced many
of the object-oriented programming concepts that you’ve learned.

Answers to Self-Review Exercises
26.1 True. The minus sign (–) indicates private visibility. We’ve mentioned “friendship” as an
exception to private visibility. Friendship is discussed in Chapter 9.

26.2 b.

26.3 The design for class Account yields the header file in Fig. 26.37.

1 // ATMCaseStudy.cpp
2 // Driver program for the ATM case study.
3 #include "ATM.h" // ATM class definition
4
5 // main function creates and runs the ATM
6 int main()
7 {
8 ATM atm; // create an ATM object
9 atm.run(); // tell the ATM to start

10 } // end main

Fig. 26.36 | ATMCaseStudy.cpp starts the ATM system.

1 // Fig. 26.37: Account.h
2 // Account class definition. Represents a bank account.
3 #ifndef ACCOUNT_H
4 #define ACCOUNT_H
5
6 class Account
7 {
8 public:
9 bool validatePIN(int); // is user-specified PIN correct?

10 double getAvailableBalance(); // returns available balance
11 double getTotalBalance(); // returns total balance
12 void credit(double); // adds an amount to the Account
13 void debit(double); // subtracts an amount from the Account
14 private:
15 int accountNumber; // account number
16 int pin; // PIN for authentication

Fig. 26.37 | Account class header file based on Fig. 26.1 and Fig. 26.2. (Part 1 of 2.)

cpphtp10_26_ATM2.fm Page 48 Tuesday, February 28, 2017 4:31 PM

 Answers to Self-Review Exercises 26_49

26.4 b.

26.5 False. The UML requires that we italicize abstract class names and operation names.

26.6 The design for class Transaction yields the header file in Fig. 26.38. In the implementa-
tion, a constructor initializes private reference attributes screen and bankDatabase to actual ob-
jects, and member functions getScreen and getBankDatabase access these attributes. These member
functions allow classes derived from Transaction to access the ATM’s screen and interact with the
bank’s database.

17 double availableBalance; // funds available for withdrawal
18 double totalBalance; // funds available + funds waiting to clear
19 }; // end class Account
20
21 #endif // ACCOUNT_H

1 // Fig. 36.38: Transaction.h
2 // Transaction abstract base class definition.
3 #ifndef TRANSACTION_H
4 #define TRANSACTION_H
5
6 class Screen; // forward declaration of class Screen
7 class BankDatabase; // forward declaration of class BankDatabase
8
9 class Transaction

10 {
11 public:
12 int getAccountNumber(); // return account number
13 Screen &getScreen(); // return reference to screen
14 BankDatabase &getBankDatabase(); // return reference to bank database
15
16 // pure virtual function to perform the transaction
17 virtual void execute() = 0; // overridden in derived classes
18 private:
19 int accountNumber; // indicates account involved
20 Screen &screen; // reference to the screen of the ATM
21 BankDatabase &bankDatabase; // reference to the account info database
22 }; // end class Transaction
23
24 #endif // TRANSACTION_H

Fig. 26.38 | Transaction class header file based on Fig. 26.10 and Fig. 26.11.

Fig. 26.37 | Account class header file based on Fig. 26.1 and Fig. 26.2. (Part 2 of 2.)

cpphtp10_26_ATM2.fm Page 49 Tuesday, February 28, 2017 4:31 PM

