
29Java Persistence API (JPA)

O b j e c t i v e s
In this chapter you’ll:
■ Learn the fundamentals of

JPA.
■ Use classes, interfaces and

annotations from the
javax.persistence
package.

■ Use the NetBeans IDE’s tools
to create a Java DB database.

■ Use the NetBeans IDE’s
object-relational-mapping
tools to autogenerate JPA
entity classes.

■ Use autogenerated entity
classes to query databases and
access data from multiple
database tables.

■ Use JPA transaction
processing capabilities to
modify database data.

■ Use Java 8 lambdas and
streams to manipulate the
results of JPA queries.

jhtp_29_JPA.fm Page 1 Tuesday, April 11, 2017 12:30 PM

29_2 Chapter 29 Java Persistence API (JPA)

29.1 Introduction
Chapter 24 used JDBC to connect to relational databases and Structured Query Language
(SQL) to query and manipulate relational databases. Recall that we created Strings con-
taining the SQL for every query, insert, update and delete operation. We also created our
own classes for managing interactions with databases. If you’re not already familiar with
relational databases, SQL and JDBC, you should read Chapter 24 first as this chapter as-
sumes you’re already familiar with the concepts we presented there. This chapter uses the
Java EE version of NetBeans 8.2. You can download the current NetBeans versions1 from

In this chapter, we introduce the Java Persistence API (JPA). One of JPA’s key capa-
bilities is mapping Java classes to relational database tables and objects of those classes to
rows in the tables. This is known as object-relational mapping. You’ll use the NetBeans
IDE’s object-relational mapping tools to select a database and autogenerate classes that use
JPA to interact with that database. Your programs can then use those classes to query the
database, insert new records, update existing records and delete records. You will not have
to create mappings between your Java code and database tables (as you did with JDBC),
and you’ll be able to perform complex database manipulations directly in Java.

Though you’ll manipulate Java DB databases in this chapter, the JPA can be used with
any database management system that supports JDBC. At the end of the chapter, we pro-
vide links to online JPA resources where you can learn more.

29.1 Introduction
29.2 JPA Technology Overview

29.2.1 Generated Entity Classes
29.2.2 Relationships Between Tables in the

Entity Classes
29.2.3 The javax.persistence Package

29.3 Querying a Database with JPA
29.3.1 Creating the Java DB Database
29.3.2 Populating the books Database with

Sample Data
29.3.3 Creating the Java Project
29.3.4 Adding the JPA and Java DB Libraries
29.3.5 Creating the Persistence Unit for the

books Database
29.3.6 Querying the Authors Table
29.3.7 JPA Features of Autogenerated Class

Authors

29.4 Named Queries; Accessing Data from
Multiple Tables

29.4.1 Using a Named Query to Get the
List of Authors, then Display the
Authors with Their ISBNs

29.4.2 Using a Named Query to Get the
List of Titles, then Display Each
with Its Authors

29.5 Address Book: Using JPA and
Transactions to Modify a Database

29.5.1 Transaction Processing
29.5.2 Creating the AddressBook

Database, Project and Persistence
Unit

29.5.3 Addresses Entity Class
29.5.4 AddressBookController Class
29.5.5 Other JPA Operations

29.6 Web Resources
29.7 Wrap-Up

https://netbeans.org/downloads/

1. As NetBeans and Java EE evolve, the steps in this chapter may change. NetBeans.org provides prior
NetBeans versions for download at http://services.netbeans.org/downloads/dev.php.

jhtp_29_JPA.fm Page 2 Tuesday, April 11, 2017 12:30 PM

29.2 JPA Technology Overview 29_3

29.2 JPA Technology Overview
When using JPA in this chapter, you’ll interact with an existing database via classes that
the NetBeans IDE generates from the database’s schema. Though we do not do so in this
chapter, it’s also possible for you to create such classes from scratch and use JPA annota-
tions that enable those classes to create corresponding tables in a database.

29.2.1 Generated Entity Classes
In Section 29.3.5, you’ll use the NetBeans Entity Classes from Database… option to add to
your project classes that represent the database tables. Together, these classes and the corre-
sponding settings are known as a persistence unit. The discussion in this section is based on
the books database that we introduced in Section 24.3.

For the books database, the NetBeans IDE’s object-relational mapping tools create
two classes in the data model—Authors and Titles. Each class—known as an entity
class—represents the corresponding table in the database and objects of these classes—
known as entities—represent the rows in the corresponding tables. These classes contain:

• Instance variables representing the table’s columns—These are named with all
lowercase letters by default and have Java types that are compatible with their da-
tabase types. Each instance variable is preceded by JPA annotations with infor-
mation about the corresponding database column, such as whether the instance
variable is the table’s primary key, whether the column’s value in the table is auto-
generated, whether the column’s value is optional and the column’s name.

• Constructors for initializing objects of the class—The resulting entity objects rep-
resent rows in the corresponding table. Programs can use entity objects to manip-
ulate the corresponding data in the database.

• Set and get methods that enable client code to access each instance variable.

• Overridden methods of class Object—hashCode, equals and toString.

29.2.2 Relationships Between Tables in the Entity Classes
We did not mention the books database’s AuthorISBN table. Recall from Section 24.3 that
this table links:

• each author in the Authors table to that author’s books in the Titles table, and

• each book in the Titles table to the book’s authors in the Authors table.

This is known as a join table, because it’s used to join information from multiple other
tables. The object-relational mapping tools do not create a class for the AuthorISBN table.
Instead, relationships between tables are taken into account by the generated entity classes:

• The Authors class contains the titlesList instance variable—a List of Title
objects representing books written by that author.

• The Titles class contains the authorsList instance variable—a List of Author
objects representing that book’s authors.

Like the other instance variables, these List variable declarations are preceded by JPA
annotations, such as the join table’s name, the Authors and AuthorISBN columns that link

jhtp_29_JPA.fm Page 3 Tuesday, April 11, 2017 12:30 PM

29_4 Chapter 29 Java Persistence API (JPA)

authors to their books, the Titles and AuthorISBN columns that link titles to their
authors, and the type of the relationship. In the book’s database there is a many-to-many
relationship, because each author can write many books and each book can have many
authors. We’ll show key features of these autogenerated classes later in the chapter.
Section 29.4 demonstrates queries that use the relationships among the books database’s
tables to display joined data.

29.2.3 The javax.persistence Package
The package javax.persistence contains the JPA interfaces and classes used to interact
with the databases in this chapter.

EntityManager Interface
An object that implements the EntityManager interface manages the interactions between
the program and the database. In Sections 29.3–29.4, you’ll use an EntityManager to cre-
ate query objects for obtaining entities from the books database. In Section 29.5, you’ll
use an EntityManager to both query the addressbook database and to create transactions
for inserting new entities into the database.

EntityManagerFactory Interface and the Persistence Class
To obtain an EntityManager for a given database, you’ll use an object that implements
the EntityManagerFactory interface. As you’ll see, the Persistence class’s static meth-
od createEntityManagerFactory returns an EntityManagerFactory for the persistence
unit you specify as a String argument.

In this chapter, you’ll use application-managed EntityManagers—that is, ones you
obtain from an EntityManagerFactory in your app. When you use JPA in Java EE apps,
you’ll obtain container-managed EntityManagers from the Java EE server (i.e., the con-
tainer) on which your app executes.

TypedQuery Class, Dynamic Queries and Named Queries
An object that implements the TypedQuery generic interface performs queries and returns
a collection of matching entities—in this chapter, you’ll specify that the queries should re-
turn List objects, though you can choose Collection, List or Set when you generate the
entity classes.

To create queries, you’ll use EntityManager methods. In Section 29.3, you’ll create a
query with the EntityManager’s createQuery method. This method’s first argument is a
String written in the Java Persistence Query Language (JPQL)—as you’ll see, JPQL is
similar to SQL (Section 24.4). JPQL queries entity objects, rather than relational database
tables. When you define a query in your own code, it’s known as a dynamic query. In
Sections 29.4–29.5, you’ll use autogenerated named queries that you can access via the
EntityManager method createNamedQuery.

29.3 Querying a Database with JPA
In this section, we demonstrate how to create the books database’s JPA entity classes, then
use JPA and those classes to connect to the books database, query it and display the results
of the query. As you’ll see, NetBeans provides tools that simplify accessing data via JPA.

jhtp_29_JPA.fm Page 4 Tuesday, April 11, 2017 12:30 PM

29.3 Querying a Database with JPA 29_5

This section’s example performs a simple query that retrieves the books database’s
Authors table. We then use lambdas and streams to display the table’s contents. The steps
you’ll perform are:

• Create a Java DB database and populate it from the books.sql file provided with
this chapter’s examples.

• Create the Java project.

• Add the JPA reference implementation’s libraries to the project.

• Add the Java DB library to the project so that the app can access the driver re-
quired to connect to the Java DB database over a network—though we’ll use the
network-capable version of Java DB here, the database will still reside on your lo-
cal computer.

• Create the persistence unit containing the entity classes for querying the database.

• Create the Java app that uses JPA to obtain the Authors table’s data.

29.3.1 Creating the Java DB Database
In this section, you’ll use the SQL script (books.sql) provided with this chapter’s exam-
ples to create the books database in NetBeans. Chapter 24 demonstrated several database
apps that used the embedded version of Java DB. This chapter’s examples use the network
server version.

Creating the Database
Perform the following steps to create the books database:

1. In the upper-left corner of the NetBeans IDE, click the Services tab. (If the Ser-
vices tab is not displayed, select Services from the Window menu.)

2. Expand the Databases node then right click Java DB. If Java DB is not already
running the Start Server option will be enabled. In this case, Select Start Server to
launch the Java DB server. You may need to wait a moment for the server to begin
executing.2

3. Right click the Java DB node, then select Create Database….

4. In the Create Java DB Database dialog, set Database Name to books, User Name
to deitel, and Password and Confirm Password to deitel.3

5. Click OK.

The preceding steps create the database using Java DB’s server version that can receive da-
tabase connections over a network. A new node named

2. If the Start Server option is disabled, select Properties… and ensure that the Java DB Installation op-
tion is set to the JDK’s db folder location.

3. We used deitel as the user name and password for simplicity—ensure that you use secure passwords
in real applications.

jdbc:derby://localhost:1527/books

jhtp_29_JPA.fm Page 5 Tuesday, April 11, 2017 12:30 PM

29_6 Chapter 29 Java Persistence API (JPA)

appears in the Services tab’s Database node. This is the JDBC URL that’s used to connect
to the database.

29.3.2 Populating the books Database with Sample Data
You’ll now populate the database with sample data using the books.sql script that’s pro-
vided with this chapter’s examples. To do so, perform the following steps:

1. Select File > Open File… to display the Open dialog.

2. Navigate to this chapter’s examples folder, select books.sql and click Open.

3. In NetBeans, right click in the SQL script and select Run File.

4. In the Select Database Connection dialog, select the JDBC URL for the database
you created in Section 29.3.1 and click OK.

The IDE will connect to the database and run the SQL script to populate the database.
The SQL script attempts to remove the database’s tables if they already exist. If they do
not, you’ll receive error messages when the three DROP TABLE commands in the SQL script
execute, but the tables will still be created properly.

You can confirm that the database was populated properly by viewing each table’s
data in NetBeans. To do so:

1. In the NetBeans Services tab, expand the Databases node, then expand the node
jdbc:derby://localhost:1527/books.

2. Expand the DEITEL node, then the Tables node.

3. Right click one of the tables and select View Data….

The books database is now set up and ready for connections.

29.3.3 Creating the Java Project
For the examples in this section and Section 29.4, we’ll create one project that contains the
books database’s JPA entity classes and two Java apps that use them. To create the project:

1. In the upper-left corner of NetBeans, select the Projects tab.

2. Select File > New Project….

3. In the New Project dialog, select the Java category, then Java Application and
click Next >.

4. For the Project Name, specify BooksDatabaseExamples, then choose where you
wish to store the project on your computer.

5. Ensure that the Create Main Class option is checked. By default, NetBeans uses
the project name as the class name and puts the class in a package named books-
databaseexamples (the project name in all lowercase letters). We changed the
class name for this first example to DisplayAuthors. Also, to indicate that the
classes in this package are from this book’s JPA chapter, we replaced the package
name with

6. Click Finish to create the project.

 com.deitel.jhtp.jpa

jhtp_29_JPA.fm Page 6 Tuesday, April 11, 2017 12:30 PM

29.3 Querying a Database with JPA 29_7

29.3.4 Adding the JPA and Java DB Libraries
For certain types of projects (such as server-side Java EE applications), NetBeans automat-
ically includes JPA support, but not for simple Java Application projects. In addition, Net-
Beans projects do not include database drivers by default. In this section, you’ll add the
JPA libraries and Java DB driver library to the project so that you can use JPA’s features
to interact with the Java DB database you created in Sections 29.3.1–29.3.2.

EclipseLink—The JPA Reference Implementation
Each Java Enterprise Edition (Java EE) API—such as JPA—has a reference implementation
that you can use to experiment with the API’s features and implement applications. The
JPA reference implementation—which is included with the NetBeans Java EE version—
is EclipseLink (http://www.eclipse.org/eclipselink).

Adding Libraries
To add JPA and Java DB support to your project:

1. In the NetBeans Projects tab, expand the BooksDatabaseExamples node.

2. Right click the project’s Libraries node and select Add Library….

3. In the Add Library dialog, hold the Ctrl key—command () in OS X—and select
EclipseLink (JPA 2.1), Java DB Driver and Persistence (JPA 2.1), then click Add
Library.

29.3.5 Creating the Persistence Unit for the books Database
In this section, you’ll create the persistence unit containing the entity classes Authors and
Titles using the NetBeans object-relational mapping tools. To do so:

1. In the NetBeans Projects tab, right click the BooksDatabaseExamples node, then
select New > Entity Classes from Database….

2. In the New Entity Classes from Database dialog’s Database Tables step, select the
books database’s URL from the Database Connection drop-down list. Then, click
the Add All >> button and click Next >.

3. The Entity Classes step enables you to customize the entity class names and the
package. Keep the default names, ensure that Generate Named Query Annotations
for Persistent Fields, Generate JAXB Annotations and Create Persistence Unit are
checked then click Next >.

4. In the Mapping Options step, change the Collection Type to java.util.List and
keep the other default settings —for queries that return multiple authors or titles,
the results will be placed in List objects.

5. Click Finish.

The IDE creates the persistence unit containing the Authors and Titles classes and adds
their source-code files Authors.java and Titles.java to the project’s package node
(com.deitel.jhtp.jpa) in the Source Packages folder. As part of the persistence unit, the
IDE also creates a META-INF package in the Source Packages folder. This contains the
persistence.xml file, which specifies persistence unit settings. These include the books
database’s JDBC URL and the persistence unit’s name, which you’ll use to obtain an

jhtp_29_JPA.fm Page 7 Tuesday, April 11, 2017 12:30 PM

29_8 Chapter 29 Java Persistence API (JPA)

EntityManager to manage the books database interactions. By default, the persistence
unit’s name is the project name followed by PU—BooksDatabaseExamplesPU. It’s also pos-
sible to have multiple persistence units, but that’s beyond this chapter’s scope.

29.3.6 Querying the Authors Table
Figure 29.1 performs a simple books database query that retrieves the Authors table and dis-
plays its data. The program illustrates using JPA to connect to the database and query it.
You’ll use a dynamic query created in main to get the data from the database—in the next
example, you’ll use auto-generated queries in the persistence unit to perform the same query
and others. In Section 29.5, you’ll learn how to modify a database through a JPA persistence
unit. Reminder: Before you run this example, ensure that the Java DB database server is run-
ning; otherwise, you’ll get runtime exceptions indicating that the app cannot connect to the
database server. For details on starting the Java DB server, see Section 29.3.1.

1 // Fig. 29.1: DisplayAuthors.java
2 // Displaying the contents of the authors table.
3 package com.deitel.jhtp.jpa;
4
5
6
7
8
9

10 public class DisplayAuthors
11 {
12 public static void main(String[] args)
13 {
14 // create an EntityManagerFactory for the persistence unit
15
16
17
18
19 // create an EntityManager for interacting with the persistence unit
20
21
22
23 // create a dynamic TypedQuery<Authors> that selects all authors
24
25
26
27 // display List of Authors
28 System.out.printf("Authors Table of Books Database:%n%n");
29 System.out.printf("%-12s%-13s%s%n",
30 "Author ID", "First Name", "Last Name");
31
32 // get all authors, create a stream and display each author
33 .stream()
34 .forEach((author) ->
35 {

Fig. 29.1 | Displaying contents of the authors table. (Part 1 of 2.)

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import javax.persistence.TypedQuery;

EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory(
 "BooksDatabaseExamplesPU");

EntityManager entityManager =
 entityManagerFactory.createEntityManager();

TypedQuery<Authors> findAllAuthors = entityManager.createQuery(
 "SELECT author FROM Authors AS author", Authors.class);

findAllAuthors.getResultList()

jhtp_29_JPA.fm Page 8 Tuesday, April 11, 2017 12:30 PM

29.3 Querying a Database with JPA 29_9

Importing the JPA Interfaces and Class Used in This Example
Lines 5–8 import the JPA interfaces and class from package javax.persistence used in
this program:

• EntityManager interface—An object of this type manages the data flow between
the program and the database.

• EntityManagerFactory interface—An object of this type creates the persistence
unit’s EntityManager.

• Persistence class—A static method of this class creates the specified per-
sistence unit’s EntityManagerFactory.

• TypedQuery interface—The EntityManager returns an object of this type when
you create a query. You then execute the query to get data from the database.

Creating the EntityManagerFactory Object
Lines 15–17 create the persistence unit’s EntityManagerFactory object. The Per-
sistence class’s static method createEntityManagerFactory receives the persistence
unit’s name—BooksDatabaseExamplesPU. In Section 29.3.5, NetBeans created this name
in persistence.xml, based on the project’s name.

Creating the EntityManager
Lines 20–21 use the EntityManagerFactory’s createEntityManager method to create an
application-managed EntityManager that handles the interactions between the app and
the database. These include querying the database, storing new entities into the database,
updating existing entries in the database and removing entities from the database. You’ll
use the EntityManager in this example to create a query.

Creating a TypedQuery That Retrieves the Authors Table
Lines 24–25 use EntityManager’s createQuery method to create a TypedQuery that re-
turns all of the Authors entities in the Authors table—each Authors entity represents one
row in the table. The first argument to createQuery is a String written in the Java Per-

36 System.out.printf("%-12d%-13s%s%n", author.getAuthorid(),
37 author.getFirstname(), author.getLastname());
38 }
39);
40 }
41 }

Authors Table of Books Database:

Author ID First Name Last Name
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Michael Morgano

Fig. 29.1 | Displaying contents of the authors table. (Part 2 of 2.)

jhtp_29_JPA.fm Page 9 Tuesday, April 11, 2017 12:30 PM

29_10 Chapter 29 Java Persistence API (JPA)

sistence Query Language (JPQL). The second argument specifies a Class object represent-
ing the type of objects the query returns—Authors.class is shorthand notation for a
creating a Class object representing Authors. Recall that when creating the entity classes,
we specified that query results should be returned as Lists. When this query executes, it
returns a List<Authors> that you can then use in your code to manipulate the Authors
table. You can learn more about JPQL in the Java EE 7 tutorial at:

Displaying the Query Results
Lines 33–39 execute the query and use lambdas and streams to display each Authors ob-
ject. To perform the query created in lines 24–25, line 33 calls its getResultsList meth-
od, which returns a List<Authors>. Next, we create a Stream from that List and invoke
the Stream’s forEach method to display each Authors object in the List. The lambda ex-
pression passed to forEach uses the Authors class’s autogenerated get methods to obtain
the author ID, first name and last name from each Authors object.

29.3.7 JPA Features of Autogenerated Class Authors
In this section, we overview various JPA annotations that were inserted into the autogen-
erated entity class Authors. Class Titles contains similar annotations. You can see the
complete list of JPA annotations and their full descriptions at:

JPA Annotations for Class Authors
If you look through the source code for autogenerated class Authors (or class Titles),
you’ll notice that the class does not contain any code that interacts with a database. In-
stead, you’ll see various JPA annotations that the NetBeans IDE’s object-relational-map-
ping tools autogenerate. When you compile the entity classes, the compiler looks at the
annotations and adds JPA capabilities that help manage the interactions with the data-
base—this is known as injecting capabilities. For the entity classes, the annotations include:

• @Entity—Specifies that the class is an entity class.

• @Table—Specifies the entity class’s corresponding database table.

• @NamedQueries/@NamedQuery—An @NamedQueries annotation specifies a collec-
tion of @NamedQuery annotations that declare various named queries. You can de-
fine your own @NamedQuery annotations in addition to the ones that the object-
relational-mapping tools can autogenerate.

JPA Annotations for Class Authors’ Instance Variables
JPA annotations also specify information about an entity class’s instance variables:

• @Id—Used to indicate the instance variable that corresponds to the database ta-
ble’s primary key. For composite primary keys, multiple instance variables would
be annotated with @Id.

• @GeneratedValue—Indicates that the column value in the database is autogene-
rated.

https://docs.oracle.com/javaee/7/tutorial/persistence-
querylanguage.htm

http://docs.oracle.com/javaee/7/api/index.html?javax/persistence/
package-summary.html

jhtp_29_JPA.fm Page 10 Tuesday, April 11, 2017 12:30 PM

29.4 Named Queries; Accessing Data from Multiple Tables 29_11

• @Basic—Specifies whether the column is optional and whether the correspond-
ing data should load lazily (i.e., only when the data is accessed through the entity
object) or eagerly (i.e., loaded immediately when the entity object is created).

• @Column—Specifies the database column to which the instance variable corre-
sponds.

• @JoinTable/@JoinColumn—These specify relationships between tables. In the
Authors class, this helps JPA determine how to populate an Authors entity’s
titlesList.

• @ManyToMany—Specifies the relationship between entities. For the Authors and
Titles entity classes, there is a many-to-many relationship—each author can
write many books and each book can have many authors. There are also annota-
tions for @ManyToOne, @OneToMany and @OneToOne relationships.

29.4 Named Queries; Accessing Data from Multiple
Tables
The next example demonstrates two named queries that were autogenerated when you cre-
ated the books database’s persistence unit in Section 29.3.5. For discussion purposes we
split the program into Figs. 29.2 and 29.3, each showing the corresponding portion of the
program’s output. Once again, we use lambdas and streams capabilities to display the re-
sults. As you’ll see, we use the relationships between the Authors and Titles entities to
display information from both database tables.

29.4.1 Using a Named Query to Get the List of Authors, then Display
the Authors with Their Titles
Figure 29.2 uses the techniques you learned in Section 29.3 to display each author fol-
lowed by that author’s list of titles. To add DisplayQueryResults.java to your project:

1. Right click the project’s name in the NetBeans Projects tab and select New > Java
Class….

2. In the New Java Class dialog, enter DisplayQueryResults for the Class Name,
select com.deitel.jhtp.jpa as the Package and click Finish.

The IDE opens the new file and you can now enter the code in Figs. 29.2 and 29.3. To
run this file, right click its name in the project, then select Run File. You can also right click
the project and select Properties then set this class as the Main Class in the project’s Run
settings. Then, when you run the project, this file’s main method will execute.

1 // Fig. 29.2: DisplayQueryResults.java
2 // Display the results of various queries.
3
4 package com.deitel.jhtp.jpa;
5

Fig. 29.2 | Using a NamedQuery to get the list of Authors, then display the Authors with their
titles. (Part 1 of 3.)

jhtp_29_JPA.fm Page 11 Tuesday, April 11, 2017 12:30 PM

29_12 Chapter 29 Java Persistence API (JPA)

6 import java.util.Comparator;
7 import javax.persistence.EntityManager;
8 import javax.persistence.EntityManagerFactory;
9 import javax.persistence.Persistence;

10 import javax.persistence.TypedQuery;
11
12 public class DisplayQueryResults
13 {
14 public static void main(String[] args)
15 {
16 // create an EntityManagerFactory for the persistence unit
17 EntityManagerFactory entityManagerFactory =
18 Persistence.createEntityManagerFactory(
19 "BooksDatabaseExamplesPU");
20
21 // create an EntityManager for interacting with the persistence unit
22 EntityManager entityManager =
23 entityManagerFactory.createEntityManager();
24
25 // TypedQuery that returns all authors
26
27
28
29 // display titles grouped by author
30 System.out.printf("Titles grouped by author:%n");
31
32 // get the List of Authors then display the results
33 .stream()
34 .sorted(Comparator.comparing()
35 .thenComparing())
36 .forEach((author) ->
37 {
38 System.out.printf("%n%s %s:%n",
39 ,);
40
41 for (Titles title :)
42 {
43 System.out.printf("\t%s%n",);
44 }
45 }
46);
47

Titles grouped by author:

Abbey Deitel:
Internet & World Wide Web How to Program
Simply Visual Basic 2010
Visual Basic 2012 How to Program
Android How to Program
Android for Programmers: An App-Driven Approach, 2/e, Volume 1
Android for Programmers: An App-Driven Approach

Fig. 29.2 | Using a NamedQuery to get the list of Authors, then display the Authors with their
titles. (Part 2 of 3.)

TypedQuery<Authors> findAllAuthors =
 entityManager.createNamedQuery("Authors.findAll", Authors.class);

findAllAuthors.getResultList()
Authors::getLastname

Authors::getFirstname

author.getFirstname() author.getLastname()

author.getTitlesList()

title.getTitle()

jhtp_29_JPA.fm Page 12 Tuesday, April 11, 2017 12:30 PM

29.4 Named Queries; Accessing Data from Multiple Tables 29_13

Creating a TypedQuery That Retrieves the Authors Table
One of the default options when you created the books database’s persistence unit was
Generate Named Query Annotations for Persistent Fields—you can view these named que-
ries before the class definitions in Authors.java and Titles.java. For class Authors, the
object-relational mapping tool autogenerated the following queries:

• "Authors.findAll"—Returns the List of all Authors entities.

• "Authors.findByAuthorid"—Returns the Authors entity with the specified
authorid value.

• "Authors.findByFirstname"—Returns the List of all Authors entities with the
specified firstname value.

• "Authors.findByLastname"—Returns the List of all Authors entities with the
specified lastname value.

Harvey Deitel:
Internet & World Wide Web How to Program
Java How to Program
Java How to Program, Late Objects Version
C How to Program
Simply Visual Basic 2010
Visual Basic 2012 How to Program
Visual C# 2012 How to Program
Visual C++ How to Program
C++ How to Program
Android How to Program
Android for Programmers: An App-Driven Approach, 2/e, Volume 1
Android for Programmers: An App-Driven Approach

Paul Deitel:
Internet & World Wide Web How to Program
Java How to Program
Java How to Program, Late Objects Version
C How to Program
Simply Visual Basic 2010
Visual Basic 2012 How to Program
Visual C# 2012 How to Program
Visual C++ How to Program
C++ How to Program
Android How to Program
Android for Programmers: An App-Driven Approach, 2/e, Volume 1
Android for Programmers: An App-Driven Approach

Michael Morgano:
Android for Programmers: An App-Driven Approach

Dan Quirk:
Visual C++ How to Program

Fig. 29.2 | Using a NamedQuery to get the list of Authors, then display the Authors with their
titles. (Part 3 of 3.)

jhtp_29_JPA.fm Page 13 Tuesday, April 11, 2017 12:30 PM

29_14 Chapter 29 Java Persistence API (JPA)

You’ll see how to provide arguments to queries in Section 29.5. Like the dynamic query
you defined in Fig. 29.1, each of these queries is defined using the Java Persistence Query
Language (JPQL).

Lines 17–23 get the EntityManager for this program, just as we did in Fig. 29.1.
Lines 26–27 use EntityManager’s createNamedQuery method to create a TypedQuery that
returns the result of the "Authors.findAll" query. The first argument is a String con-
taining the query’s name and the second is the Class object representing the entity type
that the query returns.

Processing the Results
Lines 33–46 execute the query and use Java 8 lambdas and streams to display each Authors
entity’s name followed by the list of that author’s titles. Line 33 calls the TypedQuery’s
getResultsList method to perform the query. We create a Stream that sorts the Authors
entities by last name then first name. Next, we invoke the Stream’s forEach method to
display each Authors entity’s name and list of titles. The lambda expression passed to
forEach uses the Authors class’s autogenerated get methods to obtain the first name and
last name from each Authors entity. Line 41 calls the autogenerated Authors method get-
TitlesList to get the current author’s List<Titles>, then lines 41–44 display the
String returned by each Titles entity’s autogenerated getTitle method.

29.4.2 Using a Named Query to Get the List of Titles, then Display
Each with Its Authors
In Fig. 29.3, lines 49–50 use EntityManager method createNamedQuery to create a
TypedQuery that returns the result of the "Titles.findAll" query. Then, lines 56–68 dis-
play each title followed by that title’s list of author names. Line 56 calls the TypedQuery’s
getResultsList method to perform the query. We create a Stream that sorts the Titles
entities by title. Next, we invoke the Stream’s forEach method to display each Titles en-
tity’s title and the corresponding list of authors. Once again, the lambda expression uses
the autogenerated Titles and Authors methods to access the entity data that’s displayed.

48 // TypedQuery that returns all titles
49
50
51
52 // display titles grouped by author
53 System.out.printf("%nAuthors grouped by title:%n%n");
54
55 // get the List of Titles then display the results
56 .stream()
57 .sorted(Comparator.comparing())
58 .forEach((title) ->
59 {
60 System.out.println();
61

Fig. 29.3 | Using a NamedQuery to get the list of Titles, then display each with its Authors.
(Part 1 of 3.)

TypedQuery<Titles> findAllTitles =
 entityManager.createNamedQuery("Titles.findAll", Titles.class);

findAllTitles.getResultList()
Titles::getTitle

title.getTitle()

jhtp_29_JPA.fm Page 14 Tuesday, April 11, 2017 12:30 PM

29.4 Named Queries; Accessing Data from Multiple Tables 29_15

62 for (Authors author :)
63 {
64 System.out.printf("\t%s %s%n",
65 ,);
66 }
67 }
68);
69 }
70 }

Authors grouped by title:

Android How to Program
Paul Deitel
Harvey Deitel
Abbey Deitel

Android for Programmers: An App-Driven Approach
Paul Deitel
Harvey Deitel
Abbey Deitel
Michael Morgano

Android for Programmers: An App-Driven Approach, 2/e, Volume 1
Paul Deitel
Harvey Deitel
Abbey Deitel

C How to Program
Paul Deitel
Harvey Deitel

C++ How to Program
Paul Deitel
Harvey Deitel

Internet & World Wide Web How to Program
Paul Deitel
Harvey Deitel
Abbey Deitel

Java How to Program
Paul Deitel
Harvey Deitel

Java How to Program, Late Objects Version
Paul Deitel
Harvey Deitel

Simply Visual Basic 2010
Paul Deitel
Harvey Deitel
Abbey Deitel

Visual Basic 2012 How to Program
Paul Deitel
Harvey Deitel
Abbey Deitel

Visual C# 2012 How to Program
Paul Deitel
Harvey Deitel

Fig. 29.3 | Using a NamedQuery to get the list of Titles, then display each with its Authors.
(Part 2 of 3.)

title.getAuthorsList()

author.getFirstname() author.getLastname()

jhtp_29_JPA.fm Page 15 Tuesday, April 11, 2017 12:30 PM

29_16 Chapter 29 Java Persistence API (JPA)

29.5 Address Book: Using JPA and Transactions to
Modify a Database
We now reimplement the address book app from Section 24.9 using JPA. As before, you
can browse existing entries, add new entries and search for entries with a specific last name.
Recall that the AddressBook Java DB database contains an Addresses table with the col-
umns addressID, FirstName, LastName, Email and PhoneNumber. The column addressID
is an identity column in the Addresses table.

29.5.1 Transaction Processing
Many database applications require guarantees that a series of database insertions, updates
and deletions executes properly before the application continues processing the next data-
base operation. For example, when you transfer money electronically between bank ac-
counts, several factors determine whether the transaction is successful. You begin by
specifying the source account and the amount you wish to transfer to a destination ac-
count. Next, you specify the destination account. The bank checks the source account to
determine whether its funds are sufficient to complete the transfer. If so, the bank with-
draws the specified amount and, if all goes well, deposits it into the destination account to
complete the transfer. What happens if the transfer fails after the bank withdraws the mon-
ey from the source account? In a proper banking system, the bank redeposits the money
in the source account. How would you feel if the money was subtracted from your source
account and the bank did not deposit the money in the destination account?

Transaction processing enables a program that interacts with a database to treat a set
of operations as a single operation, known as an atomic operation or a transaction. At the
end of a transaction, a decision can be made either to commit the transaction or roll back
the transaction:

• Committing the transaction finalizes the database operation(s); all insertions, up-
dates and deletions performed as part of the transaction cannot be reversed with-
out performing a new database operation.

• Rolling back the transaction leaves the database in its state prior to the database
operation. This is useful when a portion of a transaction fails to complete prop-
erly. In our bank-account-transfer discussion, the transaction would be rolled
back if the deposit could not be made into the destination account.

JPA provides transaction processing via methods of interfaces EntityManager and
EntityTransaction. EntityManager method getTransaction returns an EntityTrans-
action for managing a transaction. EntityTransaction method begin starts a transac-
tion. Next, you perform your database’s operations using the EntityManager. If the

Visual C++ How to Program
Paul Deitel
Harvey Deitel
Dan Quirk

Fig. 29.3 | Using a NamedQuery to get the list of Titles, then display each with its Authors.
(Part 3 of 3.)

jhtp_29_JPA.fm Page 16 Tuesday, April 11, 2017 12:30 PM

29.5 Address Book: Using JPA and Transactions to Modify a Database 29_17

operations execute successfully, you call EntityTransaction method commit to commit
the changes to the database. If any operation fails, you call EntityTransaction method
rollback to return the database to its state prior to the transaction. You’ll use these tech-
niques in Section 29.5.4. (In a Java EE project, the server can perform these tasks for you.)

29.5.2 Creating the AddressBook Database, Project and Persistence
Unit
Use the techniques you learned in Sections 29.3.1–29.3.5 to perform the following steps:

Step 1: Creating the addressbook Database
Using the steps presented in Section 29.3.1, create the addressbook database.

Step 2: Populating the Database
Using the steps presented in Section 29.3.2, populate the addressbook database with the
sample data in the addressbook.sql file that’s provided with this chapter’s examples.

Step 3: Creating the AddressBook Project
This app has a JavaFX GUI. For prior JavaFX apps, we created an FXML file that de-
scribed the app’s GUI, a subclass of Application that launched the app and a controller
class that handled the app’s GUI events and provided other app logic. NetBeans provides
a JavaFX FXML Application project template that creates the FXML file and Java source-
code files for the Application subclass and controller class. To use this template:

1. Select File > New Project… to open the New Project dialog.

2. Under Categories: select JavaFX and under Projects: select JavaFX FXML Applica-
tion, then click Next >.

3. For the Project Name specify AddressBook.

4. For the FXML name, specify AddressBook.

5. In the Create Application Class textfield, replace the default package name and
class name with com.deitel.jhtp.jpa.AddressBook.

6. Click Finish to create the project.

NetBeans places in the app’s package the files AddressBook.fxml, AddressBook.java and
AddressBookController.java. If you double-click the FXML file in NetBeans, it will au-
tomatically open in Scene Builder (if you have it installed) so that you can design your GUI.

For this app, rather than recreating AddressBook GUI, we replaced the default FXML
that NetBeans generated in AddressBook.fxml with the contents of AddressBook.fxml
from Section 24.9’s example (right click the FXML file in NetBeans and select Edit to view
its source code). We then changed the controller class’s name from AddressBookCon-
troller to

because the controller class in this example is in the package com.deitel.jhtp.jpa.
Also, in the autogenerated AddressBook subclass of Application (located in

AddressBook.java), we added the following statement to set the stage’s title bar String:

com.deitel.jhtp.jpa.AddressBookController

stage.setTitle("Address Book");

jhtp_29_JPA.fm Page 17 Tuesday, April 11, 2017 12:30 PM

29_18 Chapter 29 Java Persistence API (JPA)

Step 4: Adding the JPA and Java DB Libraries
Using the steps presented in Section 29.3.4, add the required JPA and JavaDB libraries to
the project’s Libraries folder.

Step 5: Creating the AddressBook Database’s Persistence Unit
Using the steps presented in Section 29.3.5, create the AddressBook database’s persistence
unit, which will be named AddressBookPU by default.

29.5.3 Addresses Entity Class
When you created the AddressBook database’s persistence unit, NetBeans autogenerated
the Addresses entity class (in Addresses.java) with several named queries. In this app,
you’ll use the queries:

• "Addresses.findAll"—Returns a List<Addresses> containing Addresses en-
tities for all the contacts.

• "Addresses.findByLastname"—Returns a List<Addresses> containing an Ad-
dresses entity for each contact with the specified last name.

Ordering the Named Query Results
By default, the JPQL for the autogenerated named queries does not order the query re-
sults. In Section 24.9, we used the SQL’s ORDER BY clause to arrange query results into as-
cending order by last name then first name. JPQL also has an ORDER BY clause. To order
the query results in this app, we opened Addresses.java and added

to the query strings for the "Addresses.findAll" and "Addresses.findByLastname"
named queries—again these are specified in the @NamedQuery annotations just before the
Addresses class’s declaration.

ToString Method of Class Addresses
In this app, we use the List<Addresses> returned by each query to populate an Observ-
ableList that’s bound to the app’s ListView. Recall that, by default, a ListView’s cells
display the String representation of the ObservableList’s elements. To ensure that each
Addresses object in the ListView is displayed in the format Last Name, First Name, we
modified the Addresses class’s autogenerated toString method. To do so, open Address-
es.java and replace its return statement with

29.5.4 AddressBookController Class
The AddressBookController class (Fig. 29.4) uses the persistence unit you created in
Section 29.5.2 to interact with addressbook database. Much of the code in Fig. 29.4 is
identical to the code in Fig. 24.34. For the discussion in this section, we focus on the high-
lighted JPA features.

ORDER BY a.lastname, a.firstname

return getLastname() + ", " + getFirstname();

jhtp_29_JPA.fm Page 18 Tuesday, April 11, 2017 12:30 PM

29.5 Address Book: Using JPA and Transactions to Modify a Database 29_19

1 // Fig. 29.4: AddressBookController.java
2 // Controller for a simple address book
3 package com.deitel.jhtp.jpa;
4
5 import java.util.List;
6 import javafx.collections.FXCollections;
7 import javafx.collections.ObservableList;
8 import javafx.event.ActionEvent;
9 import javafx.fxml.FXML;

10 import javafx.scene.control.Alert;
11 import javafx.scene.control.Alert.AlertType;
12 import javafx.scene.control.ListView;
13 import javafx.scene.control.TextField;
14
15
16
17
18
19
20 public class AddressBookController {
21 @FXML private ListView<Addresses> listView;
22 @FXML private TextField firstNameTextField;
23 @FXML private TextField lastNameTextField;
24 @FXML private TextField emailTextField;
25 @FXML private TextField phoneTextField;
26 @FXML private TextField findByLastNameTextField;
27
28 // create an EntityManagerFactory for the persistence unit
29
30
31
32 // create an EntityManager for interacting with the persistence unit
33
34
35
36 // stores list of Addresses objects that results from a database query
37 private final contactList =
38 FXCollections.observableArrayList();
39
40 // populate listView and set up listener for selection events
41 public void initialize() {
42 listView.setItems(contactList); // bind to contactsList
43
44 // when ListView selection changes, display selected person's data
45 listView.getSelectionModel().selectedItemProperty().addListener(
46 (observableValue, oldValue, newValue) -> {
47 displayContact(newValue);
48 }
49);
50 getAllEntries(); // populates contactList, which updates listView
51 }
52

Fig. 29.4 | A simple address book. (Part 1 of 5.)

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.EntityTransaction;
import javax.persistence.Persistence;
import javax.persistence.TypedQuery;

private final EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("AddressBookPU");

private final EntityManager entityManager =
 entityManagerFactory.createEntityManager();

ObservableList<Addresses>

jhtp_29_JPA.fm Page 19 Tuesday, April 11, 2017 12:30 PM

29_20 Chapter 29 Java Persistence API (JPA)

53 // get all the entries from the database to populate contactList
54 private void getAllEntries() {
55 // query that returns all contacts
56
57
58
59
60 contactList.setAll();
61 selectFirstEntry();
62 }
63
64 // select first item in listView
65 private void selectFirstEntry() {
66 listView.getSelectionModel().selectFirst();
67 }
68
69 // display contact information
70 private void displayContact() {
71 if (contact != null) {
72
73
74
75
76 }
77 else {
78 firstNameTextField.clear();
79 lastNameTextField.clear();
80 emailTextField.clear();
81 phoneTextField.clear();
82 }
83 }
84
85 // add a new entry
86 @FXML
87 void addEntryButtonPressed(ActionEvent event) {
88
89
90
91
92
93
94 // get an EntityTransaction to manage insert operation
95
96
97 try
98 {
99
100
101
102 displayAlert(AlertType.INFORMATION, "Entry Added",
103 "New entry successfully added.");
104 }

Fig. 29.4 | A simple address book. (Part 2 of 5.)

TypedQuery<Addresses> findAllAddresses =
 entityManager.createNamedQuery(
 "Addresses.findAll", Addresses.class);

findAllAddresses.getResultList()

Addresses contact

firstNameTextField.setText(contact.getFirstname());
lastNameTextField.setText(contact.getLastname());
emailTextField.setText(contact.getEmail());
phoneTextField.setText(contact.getPhonenumber());

Addresses address = new Addresses();
address.setFirstname(firstNameTextField.getText());
address.setLastname(lastNameTextField.getText());
address.setPhonenumber(phoneTextField.getText());
address.setEmail(emailTextField.getText());

EntityTransaction transaction = entityManager.getTransaction();

transaction.begin(); // start transaction
entityManager.persist(address); // store new entry
transaction.commit(); // commit changes to the database

jhtp_29_JPA.fm Page 20 Tuesday, April 11, 2017 12:30 PM

29.5 Address Book: Using JPA and Transactions to Modify a Database 29_21

105 catch (Exception e) // if transaction failed
106 {
107
108 displayAlert(AlertType.ERROR, "Entry Not Added",
109 "Unable to add entry: " + e);
110 }
111
112 getAllEntries();
113 }
114
115 // find entries with the specified last name
116 @FXML
117 void findButtonPressed(ActionEvent event) {
118 // query that returns all contacts
119
120
121
122
123 // configure parameter for query
124
125
126
127 // get all addresses
128 List<Addresses> people =
129
130 if (people.size() > 0) { // display all entries
131 contactList.setAll(people);
132 selectFirstEntry();
133 }
134 else {
135 displayAlert(AlertType.INFORMATION, "Lastname Not Found",
136 "There are no entries with the specified last name.");
137 }
138 }
139
140 // browse all the entries
141 @FXML
142 void browseAllButtonPressed(ActionEvent event) {
143 getAllEntries();
144 }
145
146 // display an Alert dialog
147 private void displayAlert(
148 AlertType type, String title, String message) {
149 Alert alert = new Alert(type);
150 alert.setTitle(title);
151 alert.setContentText(message);
152 alert.showAndWait();
153 }
154 }

Fig. 29.4 | A simple address book. (Part 3 of 5.)

transaction.rollback(); // undo database operations

TypedQuery<Addresses> findByLastname =
 entityManager.createNamedQuery(
 "Addresses.findByLastname", Addresses.class);

findByLastname.setParameter(
 "lastname", findByLastNameTextField.getText() + "%");

findByLastname.getResultList();

jhtp_29_JPA.fm Page 21 Tuesday, April 11, 2017 12:30 PM

29_22 Chapter 29 Java Persistence API (JPA)

Fig. 29.4 | A simple address book. (Part 4 of 5.)

a) Initial Address Book screen showing entries.

b) Viewing the entry for Green, Mike.

c) Adding a new entry for Sue Green.

d) Searching for last names that start with Gr.

jhtp_29_JPA.fm Page 22 Tuesday, April 11, 2017 12:30 PM

29.5 Address Book: Using JPA and Transactions to Modify a Database 29_23

Obtaining the EntityManager
Lines 29–34 use the techniques you learned in Section 29.3.6 to obtain an EntityMan-
agerFactory for the AddressBook persistence unit ("AddressBookPU"), then use it to get
the EntityManager for interacting with the addressbook database. Lines 37–38 define an
ObservableList<Addresses> named contactList that’s used to bind the app’s query re-
sults to the ListView (line 42 of method initialize).

Obtaining the Complete List of Contacts—Method getAllEntries
Lines 56–58 in method getAllEntries create a TypedQuery for the named query
"Addresses.findAll", which returns a List<Addresses> containing all the Addresses
entities in the database. Line 60 calls the TypedQuery’s getResultList method and uses
the resulting List<Addresses> to populate the contactList, which was previously bound
to the ListView. Each time the complete contacts list is loaded, line 61 calls method se-
lectFirstEntry to display the first Addresses entity’s details. Due to the listener regis-
tered in lines 45–49, this in turn calls method displayContact to display the selected
Addresses entity if there is one; otherwise, displayContact clears the TextFields that
display a contact’s details.

Adding an Entry to the Database—Method addEntryButtonPressed
When you enter new data in this app’s GUI, then click the Add Entry button—a new row
should be added to the Addresses table in the database. To create a new entity in the da-
tabase, you must first create an instance of the entity class (line 88) and set its instance vari-
ables (lines 89–92), then use a transaction to insert the data in the database (lines 95–110).
Notice that we do not specify a value for the Addresses entity’s addressid instance vari-
able—this value is autogenerated by the database when you add a new entry.

Lines 95–110 use the techniques discussed in Section 29.5.1 to perform the insert
operation. Line 95 uses EntityManager method getTransaction to get the EntityTrans-
action used to manage the transaction. In the try block, line 99 uses EntityTransaction
method begin to start the transaction. Next, line 100 calls EntityManager method
persist to insert the new entity into the database. If this operation executes successfully,
line 101 calls EntityTransaction method commit to complete the transaction and
commit the changes to the database. If the persist operation fails, line 107 in the catch

Fig. 29.4 | A simple address book. (Part 5 of 5.)

e) Returning to the complete list by clicking Browse All.

jhtp_29_JPA.fm Page 23 Tuesday, April 11, 2017 12:30 PM

29_24 Chapter 29 Java Persistence API (JPA)

block calls EntityTransaction method rollback to return the database to its state prior
to the transaction.4

Finding by Last Name—Method findButtonPressed
Lines 119–121 in method findButtonPressed create a TypedQuery for the named query
"Addresses.findByLastname", which returns a List<Addresses> containing all the en-
tities with the specified last name. If you open the autogenerated Addresses class in your
project, you’ll see that the query requires a parameter, as specified in the following JPQL
that we copied from the Addresses.java file:

The notation :lastname represents a parameter named lastname. The autogenerated que-
ry locates only exact matches, as indicated by the JPQL equals (=) operator. For this app,
we changed = to the JPQL LIKE operator so we can locate last names that begin with the
letters typed by the user in the findByLastNameTextField.

Before executing the query, you set arguments for each query parameter by calling
TypedQuery method setParameter (lines 124–125) with the JPQL parameter name as the
first argument and the corresponding value as the second argument. As in SQL, line 125
appends % to the contents of findByLastNameTextField to indicate that we’re searching
for last names that begin with the user’s input, possibly followed by more characters.

When you execute the query (line 128), it returns a List containing any matching
entities in database. If the number of results is greater than 0, lines 131–132 display the
search results in the ListView and select the first matching result to display its details. Oth-
erwise, 135–136 display an Alert dialog indicating there were no entries with the specified
last name.

29.5.5 Other JPA Operations
Though we did not do so in this example, you also can update an existing entity in the
database or delete an existing entity from the database.

Updating an Existing Entity
You update an existing entity by modifying its entity object in the context of a transaction.
Once you commit the transaction, the changes to the entity are saved to the database.

Deleting an Existing Entity
To remove an entity from the database, call EntityManager method remove in the context
of a transaction, passing the entity object to delete as an argument. When you commit the
transaction the entity is deleted from the database. This operation will fail if the entity is
referenced elsewhere in the database.

29.6 Web Resources
Here are a few key online JPA resources.

4. For simplicity, we performed this example’s database operations on the JavaFX application thread.
Any potentially long-running database operations should be performed in separate threads using the
techniques in Section 23.11.

SELECT a FROM Addresses a WHERE a.lastname = :lastname

jhtp_29_JPA.fm Page 24 Tuesday, April 11, 2017 12:30 PM

29.7 Wrap-Up 29_25

https://docs.oracle.com/javaee/7/tutorial/persistence-intro.htm

The Introduction to the Java Persistence API chapter of the Java EE 7 Tutorial.
https://docs.oracle.com/javaee/7/tutorial/persistence-querylanguage.htm

The Java Persistence Query Language chapter of the Java EE 7 Tutorial.
http://docs.oracle.com/javaee/7/api/javax/persistence/package-summary.html

The javax.persistence package documentation.
https://platform.netbeans.org/tutorials/nbm-crud.html

A NetBeans tutorial for creating a JPA-based app.

29.7 Wrap-Up
In this chapter, we introduced the Java Persistence API (JPA). We used the NetBeans IDE
to create and populate a Java DB database, using Java DB’s network server version, rather
than the embedded version demonstrated in Chapter 24. We created NetBeans projects
and added the libraries for JPA and the Java DB driver. Next, we used the NetBeans ob-
ject-relational mapping tools to autogenerate entity classes from an existing database’s
schema. We then used those classes to interact with the database.

We queried the databases with both dynamic queries created in code and named que-
ries that were autogenerated by NetBeans. We used the relationships between JPA entities
to access data from multiple database tables.

Next, we used JPA transactions to insert new data in a database. We also discussed
other JPA operations that you can perform in the context of transations, such as updating
existing entities in and deleting entities from a database. Finally, we listed several online
JPA resources from which you can learn more about JPA. In the next chapter, we begin
our two-chapter object-oriented design and implementation case study.

jhtp_29_JPA.fm Page 25 Tuesday, April 11, 2017 12:30 PM

