CHAPTER 2

A REVIEW OF BASIC STATISTICAL CONCEPTS

ANSWERS TO PROBLEMS AND CASES

1.
Descriptive Statistics


Variable        N     Mean   Median  StDev  SE Mean


Orders          28     21.32    17.00     13.37     2.53


Variable      Min      Max       Q1       Q3


Orders        5.00     54.00    11.25   28.75


a.         

 = 21.32


b.         S = 13.37


c.         S2 = 178.76


d.         If the policy is successful, smaller orders will be eliminated and the mean will 

                       increase.

e. If the change causes all customers to consolidate a number of small orders into 

           large orders, the standard deviation will probably decrease.  Otherwise, it is very 

           difficult to tell how the standard deviation will be affected.


f.         The best forecast over the long-term is the mean of  21.32.

2.
Descriptive Statistics


Variable        N      Mean   Median   StDev   SE Mean


Prices           12   176654   180000   39440     11385


Variable      Min       Max        Q1         Q3


Prices     121450   253000   138325   205625

           

 = 176,654   and     S = 39,440

3.     
 a.        Point estimate:  
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                        (5.85%, 15.67%)

 c.        df = 30(1 = 29, t = 2.045
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                        (5.64%, 15.88%)  

d. We see that the 95% confidence intervals in b and c are not much different because the multipliers 1.96 and 2.045 are nearly the same magnitude.   


This explains why a sample of size n = 30 is often taken as the cutoff between 


large and small samples.  

4.         a.   
Point estimate:  
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95% error margin:  (102.59 ( 23.41)/2 = 39.59

b.  
1(( = .90 ( Z = 1.645, 
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(29.77, 96.23)

5.
H0:   ( = 12.1         n = 100         ( = .05


H1:   ( > 12.1         S = 1.7         

 = 13.5


Reject H0  if Z > 1.645


Z = 
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Reject H0 since the computed Z (8.235) is greater than the critical Z (1.645).   The mean has 
increased.        

6.
point estimate:  8.1 seats


interval estimate:  8.1 ( 1.96 
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    (    6.5  to  9.7  seats

Forecast 8.1 empty seats per flight; very likely the mean number of empty seats will lie between 6.5 and 9.7.

7. 
n = 60, 
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     two-sided test, ( = .05, critical value: |Z|= 1.96  

          
Test statistic:  
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Since |(2.67| = 2.67 > 1.96, reject 
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 at the 5% level.  The mean satisfaction rating is 

           
different from 5.9.  


p-value:  P(Z < ( 2.67 or Z > 2.67) = 2 P(Z > 2.67) = 2(.0038) = .0076, very strong 

           evidence against 
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8.   
df = n (1 = 14 (1 = 13, 
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     one-sided test, ( = .05, critical value: t = 1.771  

           
Test statistic:  
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Since 2.23 > 1.771, reject 
[image: image18.wmf]0
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 at the 5% level.  The medium-size serving contains an 


average of more than 4 ounces of yogurt.


p-value:  P(t > 2.23) = .022, strong evidence against 
[image: image19.wmf]0

H

  

9.
H0:   ( = 700         n = 50         ( = .05


H1:   ( ( 700         S = 50         

 = 715 


Reject H0 if Z < -1.96 or Z > 1.96


Z = 
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Since the calculated Z is greater than the critical Z (2.12 > 1.96), reject the null hypothesis.  
The forecast does not appear to be reasonable.


p-value:  P(Z < ( 2.12 or Z > 2.12) = 2 P(Z > 2.12) = 2(.017) = .034, strong evidence 


               against 
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10.
This problem can be used to illustrate how a random sample is selected with Minitab.  In 

          
order to generate 30 random numbers from a population of 200 click the following menus:



Calc>Random Data>Integer

The Integer Distribution dialog box shown in the figure below appears.  The number of random digits desired, 30, is entered in the Number of rows of data to generate space.  C1 is entered for 
Store in column(s) and 1 and 200 are entered as the Minimum and Maximum values.  OK is clicked and the 30 random numbers appear in Column 1 of the worksheet.
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The null hypothesis that the mean is still 2.9 is true since the actual mean of the 
population of data is 2.91 with a standard deviation of 1.608; however, a few students may 
reject the null hypothesis, committing a Type I error.

11.
a.
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b.
Positive linear relationship

c.
(Y  = 6058     (Y2 = 4,799,724    (X = 59



(X2 = 513      (XY = 48,665             r = .938
12.      a.  
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b.
Positive linear relationship

c.         (Y   = 2312       (Y2 = 515,878      (X = 53.7



(X2 = 282.55   (XY = 12,029.3          r = .95
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13.
This is a good population for showing how random samples are taken.  If three-digit 
random numbers are generated from Minitab as demonstrated in Problem 10, the selected 
items for the sample can be easily found.  In this population, ( = 0.06 so most 

students will get a sample correlation coefficient r close to 0.  The least squares line will, in 


most cases, have a slope coefficient close to 0, and students will not be able to reject the  
 
null hypothesis H0: β1 = 0 (or, equivalently, ρ = 0) if they carry out the hypothesis test.     
14.
a.   


[image: image27.png]Rent

Scatterplot of Rent vs Size

1000 .
.
900
.
.
.
800 .
.
* .
.
700
.
600 .
600 700 800 o00 1000 1100 1200

size





b.
Rent = 275.5 + .518 Size     

c. Slope coefficient = .518 ( Increase of $.518/month for each additional square  


foot of space.  

d.   
Size = 750 ( Rent = 275.5 + .518(750) = $664/month 

15.  
n = 175, 
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Point estimate:  
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98% confidence interval:  1(( = .98 ( Z = 2.33
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Hypothesis test:  
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    two-sided test, ( = .02, critical value: |Z|= 2.33  

         
Test statistic:  
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Since |Z| = 1.54 < 2.33, do not reject 
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 at the 2% level.


As expected, the results of the hypothesis test are consistent with the confidence 


interval for (; ( = 44 is not ruled out by either procedure.   

16.         a.   
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  b.
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  c.
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17. Large sample 95% confidence interval for mean monthly return μ:
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μ = .94 (%) is not a realistic value for mean monthly return of client’s 


account since it falls outside the 95% confidence interval.  Client may have a 

case.  

18.
a.  
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b.
r = .581, positive linear association between wages and length of service.


Other variables affecting wages may be size of bank and previous experience.


c.
WAGES = 324.3 + 1.006 LOS



WAGES = 324.3 + 1.006 (80) = 405
CASE 2-1:  ALCAM ELECTRONICS

In our consulting work, business people sometimes tell us that business schools teach a risk-taking attitude that is too conservative.  This is often reflected, we are told, in students choosing too low a significance level:  such a choice requires extreme evidence to move one from the status quo.  This case can be used to generate a discussion on this point as David chooses ( = .01 and ends up "accepting" the null hypothesis that the mean lifetime is 5000 hours.


Alice's point is valid:  the company may be put in a bad position if it insists on very dramatic evidence before abandoning the notion that its components last 5000 hours.  In fact, the indifference ( (p-value) is about .0375; at any higher level the null hypothesis of 5000 hours is rejected.

CASE 2-2:  MR. TUX

In this case, John Mosby tries some primitive ways of forecasting his monthly sales.  The things he tries make some sort of sense, at least for a first cut, given that he has had no formal training in forecasting methods.  Students should have no trouble finding flaws in his efforts, such as: 


1.
The mean value for each year, if projected into the future, is of little value since 


month-to-month variability is missing.


2.
His free-hand method of fitting a regression line through his data can be improved 
upon using the least squares method, a technique now found on inexpensive hand calculators.  The large standard deviation for his monthly data suggests considerable month-to-month variability and, perhaps, a strong 

                       
seasonal effect, a factor not accounted for when the values for a year are averaged.


Both the hand-fit regression line and John's interest in dealing with the monthly seasonal factor suggest techniques to be studied in later chapters.  His efforts also point out the value of learning about well-established formal forecasting methods rather than relying on intuition and very simple methods in the absence of knowledge about forecasting.  We hope students will begin to appreciate the value of formal forecasting methods after learning about John's initial efforts.

CASE 2-3:  ALOMEGA FOOD STORES
Julie’s initial look at her data using regression analysis is a good start.  She found that the r-squared value of 36% is not very high.  Using more predictor variables, along with examining their significance in the equation, seems like a good next step.  The case suggests that other techniques may prove even more valuable, techniques to be discussed in the chapters that follow.

Examining the residuals of her equation might prove useful.  About how large are these errors?  Are forecast errors in this range acceptable to her?  Do the residuals seem to remain in the same range over time, or do they increase over time?  Are a string of negative residuals followed by a string of positive residuals or vice versa?  These questions involve a deeper understanding of forecasting using historical values and these matters will be discussed more fully in later chapters.

CHAPTER 3

EXPLORING DATA PATTERNS AND

CHOOSING A FORECASTING TECHNIQUE

ANSWERS TO PROBLEMS AND CASES

1.         Qualitative forecasting techniques rely on human judgment and intuition.  Quantitative 

            forecasting techniques rely more on manipulation of historical data.

2.         A time series consists of data that are collected, recorded, or observed over successive     

            increments of time.

3.         The secular trend of a time series is the long-term component that represents the growth or 

            decline in the series over an extended period of time.  The cyclical component is the wave-

            like fluctuation around the trend.  The seasonal component is a pattern of change that   

            repeats itself year after year.  The irregular component is that part of the time 

            series remaining after the other components have been removed. 
4.         Autocorrelation is the correlation between a variable, lagged one or more period, and itself.

5.         The autocorrelation coefficient measures the correlation between a variable, lagged one or 

            more periods, and itself.

6.         The correlogram is a useful graphical tool for displaying the autocorrelations for various 


   lags of a time series. Typically, the time lags are shown on a horizontal scale and the


   autocorrelation coefficients, the correlations between Yt and Yt-k, are displayed as vertical

            bars at the appropriate time lags.  The lengths and directions (from 0) of the bars indicate


   the magnitude and sign of the of the autocorrelation coefficients.  The lags at which


   significant autocorrelations occur provide information about the nature of the time series. 
7.  
   a.         nonstationary series

       b.         stationary series

       c.         nonstationary series

       d.         stationary series

8.         a.         stationary series

            b.         random series


   c.
      trending or nonstationary series


   d. 
      seasonal series

            e.         stationary series

            f.         trending or nonstationary series

9.         Naive methods, simple averaging methods, moving averages, and Box-Jenkins methods.     

            Examples are:  the number of breakdowns per week on an assembly line having a uniform
            production rate; the unit sales of a product or  service in the maturation stage of its life 
            cycle; and the number of sales resulting from a constant level of effort.  

10.       Moving averages, simple exponential smoothing, Holt's linear exponential smoothing, 
            simple regression, growth curves, and Box-Jenkins methods.   Examples are: sales  

            revenues of consumer goods, demand for energy consumption, and use of raw materials.   

            Other examples include:  salaries, production costs, and prices, the growth period of the 
            life cycle of a new product.

11.       Classical decomposition, census II, Winters’ exponential smoothing, time series multiple 

            regression, and Box-Jenkins methods.  Examples are:  electrical consumption, 

            summer/winter activities (sports like skiing), clothing, and agricultural growing seasons, 

            retail sales influenced by holidays, three-day weekends, and school calendars.

12.       Classical decomposition, economic indicators, econometric models, multiple regression, 

            and Box-Jenkins methods.  Examples are:  fashions, music, and food.

13.

1985    2,413        -                 1999   2358   114


1986    2,407       -6                2000   2329    -29


1987    2,403       -4                2001   2345     16


1988    2,396       -7                2002   2254    -91


1989    2,403        7                2003   2245      -9 


1990    2,443       40               2004   2279     34


1991    2,371      -72


1992    2,362       -9 



1993    2,334      -28 



1994    2,362       28



1995    2,336      -26



1996    2,344         8

1997 2,384       40

1998 2,244    -140


    Yes!  The original series has a decreasing trend.

14.        0 ( 1.96 (

 ) = 0  (  1.96 (.1118) = 0  (  .219

15.       a.         MPE


   b.         MAPE

   c.         MSE or RMSE
16.
   All four statements are true.

17.   
   a.

 r1 = .895


 
H0:  ρ1 = 0H1:  ρ1 ( 0

   

Reject if t < -2.069 or t > 2.069




SE(
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Since the computed t (4.39) is greater than the critical t (2.069), reject the null.




r2 = .788






 
H0:  ρ2 = 0H1:  ρ2 ( 0

  

 Reject if t < -2.069 or t > 2.069




SE(
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Since the computed t (4.39) is greater than the critical t (2.069), reject the null.


b.

The data are nonstationary. See plot below.
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The autocorrelation function follows. 
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18.
   a.     
 r1 = .376

   b.

The differenced data are stationary.  See plot below.  
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The autocorrelation function follows.  
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19.
   Figure 3-18 - The data are nonstationary.  (Trending data)


   Figure 3-19 - The data are random. 


   Figure 3-20 - The data are seasonal.  (Monthly data)


   Figure 3-21 - The data are stationary and have a pattern that could be modeled.

20.
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  The data have a quarterly seasonal pattern as shown by the significant autocorrelation
            at time lag 4.  First quarter earnings tend to be high, third quarter earnings tend to be low.  


   a.   Time Data Forecast Error
      



   t     Yt        
[image: image54.wmf]Y

ˆ

t            e t       

     e t 2        
[image: image55.wmf]t

t

Y

e

        
[image: image56.wmf]t

t

Y

e

 




      



  1    .40      -          -        -        -           -             - 



  2    .29     .40     -.11    .11   .0121    .3793    -.3793



  3    .24     .29     -.05    .05   .0025    .2083    -.2083



  4    .32     .24      .08    .08   .0064    .2500     .2500



  5    .47     .32      .15    .15   .0225    .3191     .3191



  6    .34     .47     -.13    .13   .0169    .3824    -.3824



  7    .30     .34     -.04    .04   .0016    .1333    -.1333



  8    .39     .30      .09    .09   .0081    .2308     .2308



  9    .63     .39      .24    .24   .0576    .3810     .3810



10    .43     .63     -.20    .20   .0400    .4651    -.4651 



11    .38     .43     -.05    .05   .0025    .1316    -.1316  



12    .49     .38      .11    .11   .0121    .2245     .2245 



13    .76     .49      .27    .27   .0729    .3553     .3553  



14    .51     .76     -.25    .25   .0625    .4902    -.4902  



15    .42     .51     -.09    .09   .0081    .2143    -.2143 



16    .61     .42      .19    .19   .0361    .3115     .3115 



17    .86     .61      .25    .25   .0625    .2907     .2907  



18    .51     .86     -.35    .35   .1225    .6863    -.6863 



19    .47     .51     -.04    .04   .0016    .0851    -.0851


20    .63     .47      .16    .16   .0256    .2540     .2540


21    .94     .63      .31    .31   .0961    .3298     .3298


22    .56     .94     -.38    .38   .1444    .6786    -.6786


23    .50     .56     -.06    .06   .0036    .1200    -.1200


24    .65     .50      .15    .15   .0225    .2308     .2308


25    .95     .65      .30    .30   .0900    .3158     .3158


26    .42     .95     -.53    .53   .2809  1.2619  -1.2619


27    .57     .42      .15    .15   .0225    .2632     .2632


28    .60     .57      .03    .03   .0009    .0500     .0500


29    .93     .60      .33    .33   .1089    .3548     .3548


30    .38     .93     -.55    .55   .3025  1.4474  -1.4474


31    .37     .38     -.01    .01   .0001    .0270    -.0270


32    .57     .37      .20    .20   .0400    .3509     .3509



                           



                             5.85  1.6865  11.2227  -2.1988


   b.
      MAD = 
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   c.
      MSE = 
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   d.
      MAPE = 
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e.       MPE = 
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21.  
a.        Time series plot follows
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b.        The sales time series appears to vary about a fixed level so it is stationary.   


c.         The sample autocorrelation function for the sales series follows:
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          The sample autocorrelations die out rapidly.  This behavior is consistent with a 


         stationary series.  Note that the sales data are not random.  Sales in adjacent 

                          weeks tend to be positively correlated.  

22.    
a.        The residuals 
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b.         The residual autocorrelations follow

        
  [image: image65.png]Autocorrelation Function: Residuals
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      Since, in this case, the residuals differ from the original observations by the 

                       constant 
[image: image66.wmf]05
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, the residual autocorrelations will be the same as the 

                       autocorrelations for the sales numbers.  There is significant residual                      

                       autocorrelation at lag 1 and the autocorrelations die out in an exponential fashion.  

                       The random model is not adequate for these data.   
23.    
a. & b.   Time series plot follows.  
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Since this series is trending upward, it is nonstationary.  There is also a seasonal




pattern since 2nd and 3rd quarter earnings tend to be relatively large and 1st and 4th 




quarter earnings tend to be relatively small.  


  c.  The autocorrelation function for the first 10 lags follows.  
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The autocorrelations are consistent with choice in part b.  The autocorrelations fail



to die out rapidly consistent with nonstationary behavior.  In addition, there are

          

relatively large autocorrelations at lags 4 and 8, indicating a quarterly seasonal 




pattern.  
24.    
a. & b.   Time series plot of fourth differences follows.  
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The time series of fourth differences appears to be stationary as it varies



 about a fixed level.  
25.    
a.   98/99Inc  98/99For  98/99Err  98/99AbsErr  98/99Err^2  98/99AbE/Inc

           70.01     50.87     19.14        19.14      366.34      0.273390

          133.39     93.83     39.56        39.56     1564.99      0.296574

          129.64     92.51     37.13        37.13     1378.64      0.286409

          100.38     80.55     19.83        19.83      393.23      0.197549

           95.85     70.01     25.84        25.84      667.71      0.269588

          157.76    133.39     24.37        24.37      593.90      0.154475

          126.98    129.64     -2.66         2.66        7.08      0.020948

           93.80    100.38     -6.58         6.58       43.30      0.070149
                                                                                  Sum              175.11               5015.17               1.5691


    b.

MAD = 175.11/8 = 21.89,   RMSE = √5015.17 = 70.82,  MAPE = 1.5691/8 = .196 




or 19.6%

    c.

Naïve forecasting method of part a assumes fourth differences are random. 




Autocorrelation function for fourth differences suggests they are not random.  




Error measures suggest naïve method not very accurate.  In particular, on average,

                        there is about a 20% error.  However, naïve method does pretty well for 1999.  




Hard to think of another naïve method that will do better.   
CASE 3-1A:  MURPHY BROTHERS FURNITURE
1.
  The retail sales series has a trend and a monthly seasonal pattern. 

2.
  Yes!  Julie has determined that her data have a trend and should be first differenced.  She has 

   
  also found out that the first differenced data are seasonal.

3.
  Techniques that she should consider include classical decomposition, Winters’ 

  
  exponential smoothing, time series multiple regression, and Box-Jenkins methods.

4.
  She will know which technique works best by comparing error measurements such as MAD, 

 
  MSE or RMSE, MAPE, and MPE.

CASE 3-1B:  MURPHY BROTHERS FURNITURE
1.
  The retail sales series has a trend and a monthly seasonal pattern. 

2.
  The patterns appear to be somewhat similar.  More actual data is needed in order to reach a  definitive conclusion.

3.
  This question should create a lively discussion.  There are good reasons to use either set of data.  The retail sales series should probably be used until more actual sales data is available.

CASE 3-2:  MR. TUX
1.      This case affords students an opportunity to learn about the use of autocorrelation functions, 

 and to continue following John Mosby's quest to find a good forecasting method for his data. 


 With the use of Minitab, the concept of first differencing data is also illustrated.  The 


 summary should conclude that the sales data have both a trend and a seasonal component.

2.
 The trend is upward.  Since there are significant autocorrelation coefficients at time lags 12 


 and 24, the data have a monthly seasonal pattern. 

3.
 There is a 49% random component.  That is, about half the variability in John’s monthly

          sales is not accounted for by trend and seasonal factors.  John, and the students analyzing 


 these results, should realize that finding an accurate method of forecasting these data could 


 be very difficult.

4. 
Yes, the first differences have a seasonal component.  Given the autocorrelations at lags 12

and 24, the monthly changes are related 12, 24, … months apart.  This information should be 

used in developing a forecasting model for changes in monthly sales. 
CASE 3-3:  CONSUMER CREDIT COUNSELING
1.
First, Dorothy used Minitab to compute the autocorrelation function for the number of new 


clients.  The results are shown below.
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Since the autocorrelations failed to die out rapidly, Dorothy concluded her series was


trending or nonstationary.  She then decided to difference her time series. 


  The autocorrelations for the first differenced series are:
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2.    
The differences appear to be stationary and are correlated in consecutive time periods.  Given 


the somewhat large autocorrelations at lags 12 and 24, a monthly seasonal pattern should be


considered.   

3.      Dorothy would recommend that various seasonal techniques such as Winters’ method of 

         exponential smoothing (Chapter 4), classical decomposition (Chapter 5), time series

         multiple regression (Chapter 8) and Box-Jenkins methods (ARIMA models in Chapter 9) be 

considered.

CASE 3-4:  alomega food stores
The sales data from Chapter 1 for the Alomega Food Stores case are reprinted in Case 
3-4.  The case suggests that Julie look at the data pattern for her sales data.  

The autocorrelation function for sales follows.  
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Autocorrelations suggest an up and down pattern that is very regular.  If one month is relatively high, next month tends to be relatively low and so forth.  Very regular

pattern is suggested by persistence of autocorrelations at relatively large lags. 


The changing of the sign of the autocorrelations from one lag to the next is consistent with 


an up and down pattern in the time series.  If high sales tend to be followed by low sales or 

low sales by high sales, autocorrelations at odd lags will be negative and autocorrelations at even lags positive.  
The relatively large autocorrelation at lag 12, 0.53, suggests there may also be a seasonal 

pattern.  This issue is explored in Case 5-6.  
CASE 3-5:  SURTIDO COOKIES 
1.
A time series plot and the autocorrelation function for Surtido Cookies sales follow.  
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The graphical evidence above suggests Surtido Cookies sales vary about a fixed level with

 
a strong monthly seasonal component.  Sales are typically high near the end of the year and 


low during the beginning of the year. 
2.
 03Sales        NaiveFor        Err         AbsErr         AbsE/03Sales        MAD = 678369/5 = 135674
              1072617          681117     391500      391500             0.364995           MAPE = .816833/5 = .163 or 16.3%
                510005          549689      -39684        39684             0.077811
        
                579541          497059       82482        82482             0.142323

                771350          652449      118901      118901            0.154147 
                590556          636358       -45802       45802             0.077557
                                                    Sum     678369            0.816833

MAD appears large because of the big numbers for sales.  MAPE is fairly large but 


perhaps tolerable.  In any event, Jame is convinced he can do better.   

          
            CHAPTER 4

        MOVING AVERAGES AND SMOOTHING METHODS
ANSWERS TO PROBLEMS AND CASES
1.   
Exponential smoothing

2.   
Naive

3.   
Moving average

4.   
Holt's two-parameter smoothing procedure
5.   
Winters’ three-parameter smoothing procedure
6.   
a.
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               1   19.39    19.00      .39      .39    .1521    .020      .020 


   2   18.96    19.39    - .43      .43    .1849    .023    -.023


   3   18.20    18.96    - .76      .76    .5776    .042    -.042


   4   17.89    18.20    - .31      .31    .0961    .017    -.017


   5   18.43    17.89      .54      .54    .2916    .029      .029


   6   19.98    18.43    1.55    1.55   2.4025   .078      .078


   7   19.51    19.98    - .47      .47    .2209    .024    -.024


   8   20.63    19.51    1.12    1.12   1.2544   .054      .054


   9   19.78    20.63    - .85      .85    .7225    .043    -.043


 10   21.25    19.78     1.47    1.47  2.1609    .069     .069


 11   21.18    21.25    - .07       .07    .0049   .003    -.003 


 12   22.14    21.18      .96       .96    .9216   .043      .043 


                                                         8.92    8.990    .445     .141


            b.   MAD = 
[image: image78.wmf]12

92

.
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 = .74
            c.   MSE = 

 = .75

d.  MAPE = 

= .0371


            e.   MPE = 

 = .0118


            f.   22.14

7.


Price               AVER1
    FITS1
RESI1


19.39 
     *       
      *
                  *


18.96
     *
                 *                      *


18.20
18.8500
     *                       *


17.89
18.3500
18.8500          -0.96000


18.43
18.1733
18.3500
 0.08000


19.98
18.7667           18.1733
 1.80667


19.51               19.3067
       18.7667
 0.74333


20.63               20.0400
       19.3067
 1.32333


19.78               19.9733
       20.0400           -0.26000


21.25               20.5533
       19.9733
 1.27667


21.18               20.7367    
20.5533
 0.62667


22.14               21.5233
20.7367
 1.40333


Accuracy Measures

MAPE: 4.6319         MAD:  0.9422           MSE:  1.1728   


The naïve approach is better.

8.
a.   See plot below.  

  Yt         Avg         Fits
          Res


200          *
       *
*


210          *             *

*


215          *             *

*


216          *             *

*


219        212           *

*


220        216         212

8


225        219         216

9



226        221.2      219

7


                             221.2 




Accuracy Measures

MAPE:  3.5779           MAD:   8.0000             MSE:  64.6667    


221.2 is forecast for period 9  
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       b. & c.    See plot below.


  
  Yt               Smoothed            Forecast

            200               200.000 
            200.000

       
            210               204.000

200.000


     
            215               208.400

204.000


 
            216               211.440

208.400




            219               214.464   
211.440

 
            220               216.678

214.646


            225               220.007

216.678

 
            226               222.404

220.007



            
    


222.404

Accuracy Measures 

MAPE:  3.2144     
MAD:   7.0013     
MSE:  58.9657     



Caution:  If Minitab is used, the final result depends on how many 



values are averaged for the initial value.  If 1 value is averaged, so in



this case the initial value is 200, the forecast for period 4 is 208.4.



The forecast error for time period 3 is 11.   
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9.       a. & c, d, e, f     3-month moving-average  (See plot below.)
            Month  Yield       MA   Forecast       Error 
                 1       9.29          *            *               *

     2       9.99          *            *               *

                 3     10.16      9.813         *               *

                 4     10.25    10.133      9.813        0.437
                 5     10.61    10.340    10.133        0.477
                 6     11.07    10.643    10.340        0.730
                 7     11.52    11.067    10.643        0.877
                 8     11.09    11.227    11.067        0.023
                 9     10.80    11.137    11.227       -0.427
               10     10.50    10.797    11.137       -0.637
               11     10.86    10.720    10.797        0.063

             12       9.97    10.443    10.720       -0.750
Accuracy Measures

MAPE: 4.5875  
MAD:  0.4911 
MSE:  0.3193

MPE:   .6904

Forecast for month 13 (Jan.) is 10.443
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            b.  & c, d, e, f     5-month moving-average  (See plot below.)
                       Month  Yield     MA    Forecast   Error

           
     1      9.29        *           *           *

            
     2      9.99        *           *           *

                 3    10.16        *           *           *

            
     4    10.25        *           *           *

                 5    10.61   10.060        *          *

            
     6    11.07   10.416   10.060    1.010

                 7    11.52   10.722   10.416    1.104

            
     8    11.09   10.908   10.722    0.368

                 9    10.80   11.018   10.908   -0.108

            
   10    10.50   10.996   11.018   -0.518

               11    10.86   10.954   10.996   -0.136

            
   12      9.97   10.644   10.954   -0.984

Accuracy Measures

MAPE: 5.5830      MAD:  0.6040
    MSE:  0.5202     
 MPE:   .7100

Forecast for month 13 (Jan.) is 10.644
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           g.          Use 3-month moving average forecast:   10.4433   

10.       Accuracy Measures  (See plot below.)
            MAPE: 5.8926  
MAD:  0.6300     
MSE:  0.5568     
MPE:  5.0588
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Forecast for month 13 (Jan. 2007) is 10.4996


No!  The accuracy measures favor the three-month moving average procedure, but the 


values of the forecasts are not much different.    
11.
See plot below. 
       
      Month  Demand   Smooth   Forecast      Error

        

1        205       205.000   205.000      0.0000

         
2        251       228.000   205.000    46.0000

         
3        304       266.000   228.000    76.0000
         
4        284       275.000   266.000    18.0000

         

5        352       313.500   275.000    77.0000

         
6        300       306.750   313.500   -13.5000

         

7        241       273.875   306.750   -65.7500

         
8        284       278.938   273.875    10.1250

         

9        312       295.469   278.938    33.0625

          10        289       292.234   295.469    -6.4688

          11        385       338.617   292.234   92.7656

          12        256       297.309   338.617  -82.6172

        Accuracy Measures 

MAPE:   14.67     
MAD:    43.44     
MSE:  2943.24     
 

Forecast for month 13 (Jan. 2007) is 297.309   
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12.   
 Naïve method  -   Forecast for 1996 Q2:   25.68   (Actual:  26.47)
  MAPE = 8.622
 MAD = 1.916
   
MSE = 5.852
 

             5-month moving average  -  Forecast for 1996 Q2:   24.244   (Actual:  26.47)
  MAPE:  9.791  
MAD:   2.249   
 MSE:   7.402  

             Exponential smoothing with a Smoothing Constant of Alpha: 0.696    

 
  MAPE: 8.425 
  MAD:  1.894            MSE:  5.462     

 Forecast for 1996 Q2:   25.227    (Actual:  26.47)
 Based on the error measures and the forecast for Q2 of 1996, the naïve method

 and simple exponential smoothing are comparable.  Either method could be used.  
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13. 
a. 
 ( = .4

             Accuracy Measures 

  MAPE:  14.05   
MAD:   24.02   
MSE:  1174.50     

 Forecast for Q1 2000:  326.367 

b.  
 ( = .6        

 
 Accuracy Measures 

  MAPE:  14.68   
MAD:   24.56    
MSE:  1080.21     

 
 Forecast for Q1 2000:  334.070

 c.         Looking at the error measures, there is not much difference between the two

choices of smoothing constant.  The error measures for α = .4 are slightly better.

The forecasts for the two choices of smoothing constant are also not much different. 
d.
The residual autocorrelations for α = .4 are shown below.  The residual autocorrelations for α = .6 are similar.  There are significant residual autocorrelations at lags 1, 4 and (very nearly) 8.  A forecasting method that yields no significant residual autocorrelations would be desirable.  
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14. 
None of the techniques do much better than the naïve method.  Simple exponential

Smoothing with α close to 1, say .95, is essentially the naïve method.  
 Accuracy Measures for Naïve Method   
  
 MAPE:  42.57   

MAD:   1.685     

MSD:  4.935     


Using the naïve method, the forecast for 2000 would be 6.85.

15.  
A time series plot of quarterly Revenues and the autocorrelation function show 

that the data are seasonal with a trend.  After some experimentation, Winters’ 

multiplicative smoothing with smoothing constants α (level) = 0.8, β (trend) = 0.1 

and γ (seasonal) = 0.1 is used to forecast future Revenues.  See plot below.   

            
Accuracy Measures

MAPE        3.8

MAD        69.1

MSE   11146.4

Forecasts

Quarter  Forecast             Lower     Upper

 
    71       2444.63           2275.34  2613.92

    72       1987.98           1773.84  2202.12

    73       2237.98            1969.23  2506.72

 
    74       1887.74            1559.46  2216.01

    75       2456.18            2065.70  2846.65

    76       1997.36            1543.10  2451.62
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An examination of the autocorrelation coefficients for the residuals from 


Winters’ multiplicative smoothing shown below indicates that none of them 

are significantly different from zero.
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16.  
a.  
An Excel time series plot for Sales follows
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            The data appear to be seasonal with relatively large sales in August, September, 

    
           October and November, and relatively small sales in July and December.  


b. & c.  The Excel spreadsheet for calculating MAPE for the naïve forecasts and

      

     the simple exponential smoothing forecasts is shown below.

                                    [image: image90.png]A [ B [ ¢ [ b [ E [ F

Sales  Naive Abs%ErT ExpSm(5) Abs%En2

430 4300 0.0000

420 430 0028 4300 00238

436 420 00%7 4250 00282

452 43 0034 4305 00476

477 452 00524 4413 0.0749

420 477 0137 459 0.0932

3% 420 00553 4396 01044

501 398 0208 4188 0.1641

514 501 00253 4599 0.1083

532 514 00338 4869 0.0847

512 532 00391 5095 0.0049

410 512 02488 5107 02467

442 410 00724 4804 00416

449 M2 001 4512 0.0049

458 M9 00197 4500 0.0173

472 458 00297 4540 0.0380

463 472 00194 4830 0.0000

a3 463 00742 4830 0.0743

400 431 00775 470 01175

487 400 01786 4235 01304

503 487 00318 4553 0.0949

503 503 00000 479 0.0476

548 503 0.0821 4911 0.1039

432 548 02685 5195 0206

MAPEI= 766%  MAPE2= 8.03%




   

Note:  MAPE2 for simple exponential smoothing in the Excel spreadsheet

is calculated with a divisor of 23 (since the first smoothed value is set equal to the first observation).  Using a divisor of 24 gives MAPE2 = 7.69%, the value reported by Minitab.  
 
d.   
Neither the naïve model nor simple exponential smoothing is likely to 



generate accurate forecasts of future monthly sales since neither model



allows for seasonality.   


e.   
The results of Winters’ multiplicative smoothing with ( = ( = ( = .5 is 



shown in the Minitab plot below.


              [image: image91.png]Sales

s60

s40

520

s00

480

460

440

a2

0

Wwinters' Method Plot for Sales
Mulilcative Method

s

At 05
Gommaoeny 03
Dota oy 05

2 4 6 6 1124 16 18 2 24
Month




  

   
            The forecast for January, 2003 is 467.    


f.   
From part e, MAPE = 2.45%.  Prefer Winters’ multiplicative smoothing

 

since it allows for seasonality and has the smallest MAPE of the three



models considered.  


g.   
The residual autocorrelations from Winters’ multiplicative smoothing are

 

shown below.  The residual autocorrelations suggest Winters’ method 



works well for these data since they are all insignificantly different from 0.  
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17.  
a.  
The four-week moving average seems to represent the data a little better.  



Compare the error measures for the four-week moving average in the figure below



with the five-week moving average results in Figure 4-4.
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b.
Simple exponential smoothing with a smoothing constant of α = .7 does a 


better job of smoothing the data than a four-week moving average as judged



by the uniformly smaller error measures shown in the plot below.  
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18.
a.
As the order of the moving average increases, the smoothed data become more


wavelike.  Looking at the results for orders k =10 and k = 15,  and counting the 



number of years from one peak to the next, it appears as if the number of severe



earthquakes is on about a 30 year cycle.  


b.
The results of simple exponential smoothing with a smoothing constant of α = .4



are shown in the plot below.  The forecast for the number of severe earthquakes



for 2000 is 20.  
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The residual autocorrelation function is shown below.  There are no 


significant residual autocorrelations.  Simple exponential smoothing seems



to provide a good fit to the earthquake data.  
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c.
There can be no seasonal component in the number of severe earthquakes since these data are recorded on an annual basis.  

19.
a.
The results of Holt’s smoothing with α (level) = .9 and β (trend) = .1 for 
Southwest Airline’s quarterly income are shown below.  A plot of the residual autocorrelation function follows.  It appears as if Holt’s procedure represents the data well but the residual autocorrelations have significant spikes at the seasonal lags of  4 and 8 suggesting a seasonal component is not captured by Holt’s method.   
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b.
Winters’ multiplicative smoothing with α = β = γ =.2 was applied to the quarterly 


income data and the results are shown in the plot below.  The forecasts for the



four quarters of 2000 are:




Quarter   Forecast 

                                            49         88.960   

                                            50       184.811  

                                            51       181.464  

                                            52       117.985  
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The forecasts seem reasonable but the residual autocorrelation function below has



a significant spike at lag 1.  So although Winters’ procedure captures the trend and 



seasonality, there is still some association in consecutive observations not 



accounted for by Winters’ method.  
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20.  
A time series plot of The Gap quarterly sales is shown below.  
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This time series is trending upward and has a seasonal pattern with third and fourth


quarter Gap sales relatively large.  Moreover the variability in this series is increasing


with the level suggesting a multiplicative Winters’ smoothing procedure or a 


transformation of the data (say logarithms of sales) to stabilize the variability.


The results of Winters’ multiplicative smoothing with smoothing constants 

α = β = γ =.2 are shown in the plot below.   
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The forecasts for the four quarters of 2005 are:



Forecasts

Quarter    Forecast      Lower      Upper

 

 101          3644.18    3423.79   3864.57

 102          3775.78    3551.94   3999.62

 

 103          4269.27    4041.58   4496.96

 104          5267.82    5035.90   5499.74



The forecasts seem reasonable, however, the residuals autocorrelations shown 


below indicate there is still some autocorrelation at low lags, including the 



seasonal lag S = 4, that is not accounted for by Winters’ method.  A better



model is needed.  This issue is explored in later chapters of the text.  
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CASE 4-1:  THE SOLAR ALTERNATIVE COMPANY   


   This case provides the student with an opportunity to deal with a frequent real world problem:  small data sets. A plot of the two years of data shows both an upward trend and seasonal pattern.  The forecasting model that is selected must do an accurate job for at least three months into the future.


   Averaging methods are not appropriate for this data set because they do not work when data has a trend, seasonality, or some other systematic pattern.  Moving average models tend to smooth out the seasonal pattern of the data instead of making use of it to forecast.  


   A naive model that takes into account both the trend and the seasonality of the data might work.  Since the seasonal pattern appears to be strong, a good forecast might take the same value it did in the corresponding month one year ago or Yt+1 = Yt-11.
However, as it stands, this forecast ignores the trend.  One approach to estimate trend is to calculate the increase from each month in 2005 to the same month in 2006.   As an example, the increase from January, 2005 to January, 2006 is equal to (Y13 - Y1) = (17 - 5) = 12. 


After the increases for all 12 months are calculated, they can be summed and then divided by 12.  The forecast for each month of 2007 could then be calculated as the value for the same month in 2006 plus the average increase for each of the 12 months from 2005 to the same month in 2006.  Consequently, the forecast for January, 2007 is 
      Y25 = 17 + [(17 - 5) + (14 - 6) + (20 - 10) + (23 - 13) + (30 - 18) + (38 - 15) + (44 - 23) +


    (41 - 26) + (33 - 21) + (23 - 15) + (26 - 12) + (17 - 14)]/12

       Y25 = 17 + 
[image: image104.wmf]12

148

 = 17 + 12 = 29
The forecasts for 2007 are:   
   Jan         29




   Feb        26




   Mar       32




   Apr       35




   May      42




   Jun        50




   Jul         56




   Aug       53




   Sep        45




   Oct        35




   Nov       38




   Dec        29  


Winters’ multiplicative method with smoothing constants α = .1, β = .1, γ = .3 seems to

represent the data fairly well (see plot below) and produces the forecasts:  


  Month     Forecast    

Jan/2007       19.8  

Feb/2007      18.0  

Mar/2007     26.8 

Apr/2007     32.0 

May/2007    42.4 

Jun/2007      45.8  

Jul/2007       58.4 

Aug/2007     58.9  

Sep/2007      47.6  

Oct/2007      33.7 

Nov/2007     33.5  

Dec/2007      28.0  
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The naïve forecasts are not unreasonable but the Winters’ forecasts seem to have captured the seasonal pattern a little better, particularly for the first 3 months of the year.  Notice that if the trend and seasonal pattern are strong, Winters’ smoothing procedure can work well even with only two years of monthly data.  
CASE 4-2:  MR TUX

This case shows how several exponential smoothing methods can be applied to the Mr. Tux data.  John Mosby tries simple exponential smoothing and exponential smoothing with adjustments for trend and seasonal factors, along with a three-month moving average.


Students can begin to see that several forecasting methods are typically tried when an important variable must be forecast.  Some method of comparing them must be used, such as the three accuracy methods discussed in this case. Students should be asked their opinions of John's progress in his forecasting efforts given these accuracy values.  It should be apparent to most that the degree of accuracy achieved is not sufficient and that further study is needed. Students should be reminded that they are looking at actual data, and that the problems faced by John Mosby really occurred.

1. 
Of the methods attempted, Winters’ multiplicative smoothing was the best method John 

found.  Each forecast was typically off by about 25,825.   The error in each forecast was
 
about 22% of the value of the variable being forecast.  

2.
There are other choices for the smoothing constants that lead to smaller error measures.

For example, with α = β = γ = .1, MAD = 22,634 and MAPE = 20.  

3.
John should examine plots of the residuals and the residual autocorrelations.  If Winters’


procedure is adequate, the residuals should appear to be random.  In addition, John can 

examine the forecasts for the next 12 months to see if they appear to be reasonable. 

4.
The ideal value for MPE is 0.  If MPE is negative, then, on average, the predicted values

are too high (larger than the actual values).  

CASE 4-3:  CONSUMER CREDIT COUNSELING

1.        Students should realize immediately that simply using the basic naive approach of 


  using last period to predict this period will not allow for forecasts for the rest of 


  1993.   Since the autocorrelation coefficients presented in Case 3-3 indicate 

 
some seasonality, a naive model using April 1992 to predict April 1993, May 1992 to 



predict May 1993 and so forth might be tried.  This approach produces the error


 
measures 

  MAD = 23.39

MSE = 861.34

MAPE = 18.95


over the data region, and are not particularly attractive given the magnitudes of the new


client numbers.  

2.        A moving average model of any order cannot be defended since any moving average


will produce flat line forecasts for the rest of 1993.  That is, the forecasts will lie along a 


horizontal line whose level is the last value for the moving average.  The seasonal pattern

will be ignored.  
3.        Since the data have a seasonal component, Winters’ multiplicative smoothing


procedure with smoothing constants α = β = γ =.2 was tried.  For these choices:  

MAD = 19.29, MSE = 545.41 and MAPE = 16.74.  For smoothing constants α = .5, 


β = γ = .1, MAD = 16.94, MSE = 451.26 and MAPE = 14.30.  

4.        
Of the methods attempted, the Winters’ multiplicative smoothing procedure


with smoothing constants α = .5, β = γ = .1 is best based on MAD, MSD, and MAPE.

5.
Using Winters’ procedure in 4, the forecasts for the remainder of 1993 are:



 Month          Forecast 

Apr/1993        148 

May/1993       141 

Jun/1993         148  

Jul/1993          141 

Aug/1993        143 

Sep/1993         136
Oct/1993         159
Nov/1993        146  

Dec/1993         126
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6.
There are no significant residual autocorrelations (see plot below).  Winters’ 

multiplicative smoothing seems adequate.  
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CASE 4-4:  MURPHY BROTHERS FURNITURE

1. No adequate smoothing model was found!  A Winters’ multiplicative model using  

α = .3, β = .2 and γ = .1 was deemed the best but there was still some significant 

residual autocorrelation.   

2. Yes.  A Winters’ multiplicative smoothing procedure with α = .8, β = .1 and γ = .1 was adequate.  Also, a naïve model that combined seasonal and trend estimates (similar to Equation 4.5) was found to be adequate.  The trend and seasonal pattern in actual
Murphy Brother’s sales are consistent and pronounced so a naïve model is likely to


work well.   

3. Based on the forecasting methods tested, actual Murphy Brother’s sales data should be used.  A plot of the results for the best Winters’ procedure follows.  
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 An examination of the autocorrelation coefficients for the residuals from this Winters’

model shown below indicates that none of them are significantly different from zero.
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However, Julie decided to use the naïve model because it was very simple and she could explain it to her father.  
CASE 4-5:  FIVE-YEAR REVENUE PROJECTION FOR DOWNTOWN RADIOLOGY

 This case is designed to emphasize the use of subjective probability estimates in a 
forecasting situation.    The methodology used to generate revenue forecasts is both appropriate

and accurately employed.   The key to answering the question concerning the accuracy of the projections hinges on the accuracy of the assumptions made and estimates used.   Examination 
of the report indicates that the analysts were conservative each time they made an assumption or computed an estimate.   This is probably one of the major reasons why the Professional

Marketing Associates’ (PMA) forecast is considerably lower.   Since we do not know how the accountant projected the number of procedures, it is difficult to determine why his revenue projections were higher.  However, it is reasonable to assume that his forecast of the number 
of cases for each type of procedure was not nearly as sophisticated or thorough as PMAs.   
Therefore, the recommendation to management should indicate that the PMA forecast, while 
probably on the conservative side, is more likely to be accurate.


   Downtown Radiology evidently agreed with PMA's forecast.   They decided not to 

purchase a 9,800 series CT scanner.   They also decided to purchase a less expensive MRI.

Finally, they decided to obtain outside funding and did not resort to any type of public offering.  

They built their new imaging center, purchased an MRI and have created a very successful 
imaging center.

CASE 4-6:  WEB RETAILER   
1.
The time series plot for Orders shows a slight upward trend and a seasonal pattern

with peaks in December.  Because of the relatively small data set, the autocorrelations


are only computed for a limited number of lags, 6 in this case.  Consequently with


monthly data, the seasonality does not show up in the autocorrelation function.  There 


is significant positive autocorrelation at lag 1, so Orders in consecutive months are 


correlated.  


The time series plot for CPO shows a downward trend but a seasonal component is


not readily apparent.  There is significant positive autocorrelation at lag 1 and the 


autocorrelations die out relatively slowly.  The CPO series is nonstationary and 


observations in consecutive time periods are correlated.

2.
Winters’ multiplicative smoothing with α = β = γ = .1 works well (see plot below).

Forecasts for the next 4 months follow.  Residual autocorrelation function below


has no significant autocorrelations.  

  Month      Forecast       Lower      Upper

Jul/2003     3524720    3072265  3977174

Aug/2003   3885780    3431589  4339972

Sep/2003    3656581    3200544  4112618

Oct/2003    4141277    3683287  4599266
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3.
Simple exponential smoothing with α = .77 (the optimal α in Minitab) represents the

the CPO data well but, like any “averaging” procedure, produces flat-line forecasts. 


Forecasts of CPO for the next 4 months are:

 Month    Forecast     Lower    Upper

Jul/2003    0.1045     0.0787   0.1303

   

Aug/2003  0.1045     0.0787   0.1303

Sep/2003   0.1045     0.0787   0.1303

Oct/2003   0.1045     0.0787   0.1303


The results for simple exponential smoothing are pictured below.  There are no


significant residual autocorrelations (see plot below).
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[image: image113.png]Autocorrelation Function for Residuals: Simple Exponential Smoothing

10
08
05

4] —-—-—

02

ooty
T
02

Autocorrelation

o]

0
0
-1

Lag




4.
Multiplying the Orders forecasts in 2 by the CPO forecasts in 3 gives the 

Contacts forecasts:  

  Month    
Forecast      
Jul/2003 
 368333  
Aug/2003 
 406064  
Sep/2003  
 382113 
Oct/2003 
 432763  
5.
It seems reasonable to forecast Contacts directly if the data are available.  

Multiplying a forecast of Orders by a forecast of CPO to get a forecast of Contacts

has the potential for introducing additional error (uncertainty) into the process. 

6.
It may or may not be better to focus on the number of units and contacts per unit

to get a forecast of contacts.  It depends on the nature of the data (ease of modeling)


and the amount of relevant data available.  
CASE 4-7:  SOUTHWEST MEDICAL CENTER   
1.
Autocorrelation function for total visits suggests time series is nonstationary

(since autocorrelations slow to die out) and seasonal (relatively large autocorrelation


at lag 12).  

2.
There is no adequate smoothing method to represent Mary’s data.  Winters’ 

multiplicative smoothing with α = β = .5 and γ = .2 seems to do as well as any 

smoothing procedure (see error measures in plot below).  Forecasts for the remainder 

of FY2003-04 generated by Winters’ procedure follow.  


        Month     Forecast      Lower    Upper

                 Mar/2004     1465.8      1249.9   1681.7

                 Apr/2004     1490.5      1252.6   1728.4

                May/2004     1453.7      1189.3   1718.1

                  Jun/2004     1465.4      1171.2   1759.6

                   Jul/2004     1568.7      1242.3   1895.1

                 Aug/2004     1552.7      1192.4   1913.0


Forecasts seem high.  Residual autocorrelation function pictured below indicates

some remaining significant autocorrelation not captured by Winters’ method.  
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3.
If another forecasting method can adequately account for the autocorrelation

in the Total Visits data, it is likely to produce “better” forecasts.  This issue


is explored in subsequent cases.  

4.
The forecasts from Winters’ smoothing show an upward trend.  If they are 


to be believed, perhaps additional medical staff are required to handle the 


expected increased demand.  At this point however, further study is required.  

CASE 4-8:  SURTIDO COOKIES

1.
Jame learned that Surtido Cookie sales have a strong seasonal pattern

(sales are relatively high during the last two months of the year, low during 


the spring) with very little, if any, trend (see Case 3-5).  

2.
The autocorrelation function for sales (see Case 3-5) is consistent with


the time series plot.  The autocorrelations die out (consistent with no


trend) and have a spike at the seasonal lag 12 (consistent with a seasonal


component).

3.
Winters’ multiplicative smoothing with α = β = γ = .2 seems to represent the

data fairly well and produce reasonable forecasts (see plot below).  However,


there is still some significant residual autocorrelation at low lags.  

                                Month     Forecast      Lower      Upper

                              Jun/2003    653254       91351  1215157

                               Jul/2003    712159     141453  1282865

                             Aug/2003    655889       75368  1236411

                             Sep/2003   1532946     941647  2124245

                             Oct/2003   1710520    1107533  2313507

                            Nov/2003   2133888    1518354  2749421

                             Dec/2003   1903589    1274702  2532476
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4.
Karin’s forecasts follow.  



        Month     Forecast      
                              Jun/2003    618914       
                               Jul/2003    685615  
                             Aug/2003    622795       
                             Sep/2003   1447864     
                             Oct/2003   1630271    
                            Nov/2003   2038257    
                             Dec/2003   1817989    

These forecasts have the same pattern as the forecasts generated by Winters’

method but are uniformly lower.  Winters’ forecasts seem more consistent


with recent history.  

                      CHAPTER 5
TIME SERIES AND THEIR COMPONENTS

ANSWERS TO PROBLEMS AND CASES
 1.  
  The purpose of decomposing a time series variable is to observe its various elements 



 in isolation.   By doing so, insights into the causes of the variability of the series are 


   frequently gained.  A second important reason for isolating time series components 


   is to facilitate the forecasting process.

 2.  The multiplicative components model works best when the variability of the time 

            series increases with the level.   That is, the values of the series spread out as the 

            trend increases, and the set of observations have the appearance of a megaphone 

            or funnel.

 3.     
 The basic forces that affect and help explain the trend-cycle of a series are 


 population growth, price inflation, technological change, and productivity increases. 

 4.   
a.   
Exponential

b.   
Growth curve (Gompertz)


      c.   
Linear

 5.   
Weather and the calendar year such as holidays affect the seasonal component.

 6.    
a. & b. 
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  c. 
23.89 billion 


  d.   
648.5 billion


            e.   

The trend estimate is below Value Line’s estimate of 680 billion.

            f.   

Inflation, population growth, and new technology affect the trend of capital 



     spending.

 7.  
a. & b.       
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            c.        
[image: image120.wmf]Y

 = 9310 + 1795(19) = 43,415

d.   
Cyclical component might be indicated because of wavelike behavior of



observations about fitted straight line.  However, if there is a cyclical affect, it 


is very slight.   

 8.   
Median equals 
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 9.   

[image: image122.wmf]Y
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10.  
(80.0 + 85.4)/2 = 82.7            

       

[image: image123.wmf]Y
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11.   
All of the statements are correct except d.

12.
                       Sales               Seasonal      Deseasonalized


  Month    ($ Thousands)      Index (%)             Data





   Jan              125                      51                       245


   Feb             113                      50                       226


   Mar            189                      87                       217


   Apr            201                      93                       216


   May           206                      95                       217


   Jun             241                      99                       243


   Jul              230                      96                       240


   Aug            245                      89                       275


   Sep             271                    103                      263


   Oct             291                    120                      243


   Nov            320                    131                      244


   Dec            419                     189                      222


  The statement is not true.   When the data are deseasonalized, it shows that business       


   is about the same.

13.   
a.  & b.  Would use both the trend and seasonal indices to forecast although seasonal



  component is not strong in this example (see plot and seasonal indices below).
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Fitted Trend Equation

Yt = 2268.0 + 22.1*t

Seasonal Indices

Period      Index

   
  1            0.969
   
  2            1.026
   
  3            1.000
    
  4            1.005


Forecasts

Period   
Forecast

Q3/1996   
3305.39

Q4/1996  
3343.02


c.  
The forecast for third quarter is a bit low compared to Value



Line’s forecast (3,305 versus 3,340).  The forecast for fourth quarter 


is a bit high compared to Value Line’s (3,343 versus 3,300).   


Additional plots associated with the decomposition follow.  
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14.  
a.  
Multiplicative Model
Data      Cavanaugh Sales

Length    77

NMissing  0

Fitted Trend Equation

Yt = 72.6 + 6.01*t

Seasonal Indices

Period    Index

    

     1       1.278

     

     2       0.907

    

     3       0.616

   

     4       0.482

    

     5       0.426

     

     6       0.467

     

     7       0.653

      

     8       0.863

   

     9       1.365

    

   10       1.790

   

   11       1.865

    

   12       1.288
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b.  
Pronounced trend and seasonal components.  Would use both for 

forecasting.

c.  
Forecasts (see plot in part a)
 Month       Forecast

Jun/2006         253

Jul/2006          358

Aug/2006        478

Sep/2006        764

Oct/2006      1012

Nov/2006     1066

Dec/2006       744
15.   
a.  
Additive Model
Data      LnSales

Length    77

NMissing  0

Fitted Trend Equation

Yt = 4.6462 + 0.0215*t

Seasonal Indices

Period      Index

   

     1         0.335

    

     2        -0.018

 

     3        -0.402

    

     4        -0.637

     

     5        -0.714

   

     6         -0.571

   

     7         -0.273

    

     8         -0.001

   

     9          0.470

   

   10          0.723

    

   11          0.747

    

   12          0.342
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b.        Pronounced trend and seasonal components.  Would use both to forecast.

     c. & d.      Forecasts

Month       Forecast of LnSales
Forecast of Sales
Jun/2006           5.75297

         315
Jul/2006            6.07205

         434
Aug/2006          6.36535

         581
Sep/2006           6.85802

         951
Oct/2006           7.13248

       1252
Nov/2006          7.17779

       1310
Dec/2006           6.79477

         893                
    e.         Forecasts of Cavanaugh sales developed from additive decomposition are 
higher (for all months June 2006 through December 2006) than those developed from the multiplicative decomposition.  Forecasts from multiplicative decomposition appear to be a little more consistent with recent behavior of Cavanaugh sales time series.

16.  
a.  
Multiplicative Model
Data      Disney Sales

Length    63

NMissing  0

Fitted Trend Equation

Yt = -302.9 + 44.9*t

Seasonal Indices

Period    Index

    

    1        0.957

    

    2        1.022

     

    3        1.046

     

    4        0.975
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b.  
There is a significant trend but it is not a linear trend.  First quarter sales 

tend to be relatively low and third quarter sales tend to be relatively high.  

However, the plot in part a indicates a multiplicative decomposition with a 

linear trend is not an adequate representation of Disney sales.  Perhaps 

better to do a multiplicative decomposition with a quadratic trend.  Even 

better, in this case, is to do an additive decomposition with the logarithms 

of Disney sales.  

c.  
With the right decomposition, would use both the trend and seasonal 

components to generate forecasts.

d.  
Forecasts



Quarter     Forecast

Q4/1995      2506
Q1/1996      2502
Q2/1996      2719
Q3/1996      2830
Q4/1996      2681
However, the plot in part a indicates that forecasts generated from a      multiplicative decomposition with a linear trend are likely to be too low.

17.       a.  
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Variation appears to be increasing with level.  Multiplicative

     
decomposition may be appropriate or additive decomposition with the

               logarithms of demand.

   b.  
Neither a multiplicative decomposition or an additive decomposition with a 

linear trend work well for this series. This time series is best modeled with other methods.  The multiplicative decomposition is pictured below.  

c.  
Seasonal Indices (Multiplicative Decomposition for Demand)

    
      Period    Index
Period      Index        Period    Index

         
         1         0.947          5            1.004           9         1.045
         2         0.950          6            1.007         10         0.982  

         3         0.961          7            1.022         11         0.995
         4         0.998          8            1.070         12         1.019
   

Demand tends to be relatively high in the late summer months.  

d.  
Forecasts derived from a multiplicative decomposition of demand (see plot 

below).

  
         Month               Forecast

         Oct/1996

 171.2
         
         Nov/1996
 174.9
         Dec/1996
 180.5
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18. 
Multiplicative Model
Data      U.S. Retail Sales

Length    84

NMissing  0

Fitted Trend Equation

Yt = 128.814 + 0.677*t

Seasonal Indices

 
 Period    Index

     
       1      0.880

     
       2      0.859

  
       3      0.991

   
       4      0.986

 
       5      1.031

   
       6      1.021

    
       7      1.007

  
       8      1.035

   
       9      0.973

   
     10      0.991

  
     11      1.015

   
     12      1.210

Forecasts and Actuals
Period    
Forecast
Actual
Jan/1995   
    164.0
  167.0
Feb/1995   
    160.7
  164.0
Mar/1995  
    186.1
  192.1
Apr/1995   
    185.8
  187.5
May/1995  
    194.9
  201.4
Jun/1995   
    193.6
  202.6
Jul/1995  
    191.8
  194.9
Aug/1995  
    197.7
  204.2
Sep/1995  
    186.6
  192.8
Oct/1995 
    190.6
  194.0
Nov/1995  
    196.1
  202.4
Dec/1995 
    234.5
  238.0

Forecasts maintain the seasonal pattern but are uniformly below the actual 


retail sales for 1995.  However, MPE = MAPE = 2.49% is relatively small.  
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19. 
a.
Jan = 

= 500

     

500(1.37) = 685 people estimated for Feb
     b. 
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.    
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   Jan       
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   Feb     
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   Mar   
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   Apr       

[image: image139.wmf]Y

ˆ

= (140 + 5(75))(0.33) = 170



   May      
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   Jun       
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   Sep       
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   Dec     

[image: image147.wmf]Y

ˆ

= (140 + 5(83))(0.97) = 538

            c. 
5

22.   
Deflating a time series removes the effects of dollar inflation and permits the analyst 


to examine the series in constant dollars.

23.   

1289.73(2.847) = 3,671.86

24.
   Jan         303,589


  
 Feb        251,254



 Mar       303,556



 Apr       317,872



 May      329,551


 Jun        261,362

         
    Jul         336,417
25. 
Multiplicative Model
Data      Employed Men
Length    130

NMissing  0

Fitted Trend Equation

Yt = 65355 + 72.7*t

Seasonal Indices

  Month    Index

Month      Index
     
          1     0.981                              7
     1.019
     
          2     0.985
                    8
     1.014

          3     0.990                              9       1.002
   
         4     0.995                             10       1.004
   
         5     1.002                             11       0.999
  
         6     1.014                             12       0.995 
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Forecasts

   Month        Forecast

Nov/2003      74791.4

Dec/2003      74581.7

Jan/2004       73607.8

Feb/2004      73954.0

Mar/2004      74393.4

Apr/2004      74887.2

May/2004     75454.0

Jun/2004       76419.5

Jul/2004        76894.1

Aug/2004      76564.4

Sep/2004      75757.2

Oct/2004      76005.6


A multiplicative decomposition with a default linear trend is not quite right for these

data.  There is some curvature in the time series as the plot of the seasonally adjusted


data indicates.  Not surprisingly, there is a strong seasonal component with 


employment relatively high in the summer and relatively low in the winter.  In spite 


of the not quite linear trend, the forecasts seem reasonable.  

26.
A linear trend is not appropriate for the employed men data. The plot below shows 

a quadratic trend fit to the data of Table P-25.
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Although better than a linear trend, the quadratic trend is not quite right.  Employment


for the years 2000—2003 seems to have leveled off.  No simple trend curve is 


likely to provide an excellent fit to these data.  The residual autocorrelation 


function below indicates a prominent seasonal component since there are large

autocorrelations at the seasonal lag S = 12 and its multiples. 
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27.
Multiplicative Model

Data      Wal-Mart Sales

Length    56

NMissing  0

Fitted Trend Equation

Yt = 1157 + 1088*t

Seasonal Indices

Quarter   Index

     Q1     0.923

 
     Q2     0.986

 
     Q3     0.958

 
     Q4     1.133
                       [image: image153.png]Seasonal Indices
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Forecasts and Actuals
Quarter     Forecast       Actuals
Q1/2004       58328         65443
Q2/2004       63346         70466
Q3/2004       62607         69261
Q4/2004       75278         82819

Slight upward curvature in the Wal-Mart sales data so a linear trend is not quite


right.  Not surprisingly, there is a strong seasonal component with 4th quarter


sales relatively high and 1st quarter sales relatively low.  The forecasts for 2004 


are uniformly below the actuals (primarily the result of the linear trend assumption)

although the seasonal pattern is maintained.  Here MPE = MAPE = 9.92%.  
Multiplicative decomposition better than additive decomposition but any 


decomposition that assumes a linear trend will not forecast sales for 2004 well.

28.
A linear trend fit to the Wal-Mart sales data of Table P-27 is shown below.  A 


linear trend misses the upward curvature in the data.  
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A quadratic trend provides a better fit to the Wal-Mart sales data (see plot

below).  The autocorrelation function for the residuals from a quadratic 


trend fit suggests a prominent seasonal component since there are large


autocorrelations at the seasonal lag S = 4 and its multiples.  
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CASE 5-1:  THE SMALL ENGINE DOCTOR

1.
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2.
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3.
           SEASONAL                   FITTED VALUES AND 

          ADJUSTMENT                   FORECASTS, T*S 

  MONTH         FACTORS           2005     2006      2007    

   Jan     
    0.693                  8.68     17.32     25.97    

   Feb          
    0.707                  9.59     18.41     27.23    

   Mar                  0.935                13.66     25.34     30.01    

   Apr                  1.142                17.87     32.13     46.38    

   May                 1.526                25.48     44.52     63.57    

   Jun                   1.940                34.39     58.61     82.82   

   Jul                    1.479                27.77     46.23     64.69   


   Aug                  0.998                19.77     32.23     44.68  

   Sep                   0.757                15.78     25.22     34.67   

   Oct                   0.373                  8.17     12.83     17.49  

   Nov                  0.291                  6.68     10.32     13.95    

   Dec                  1.290                30.94      47.06     63.17    
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4.
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5.    
Trend*Seasonality (T*S):        MAD = 1.52

Linear Trend Model:                MAD = 9.87
6.   
If you had to limit your choices to the models in 2 and 4, the linear trend model is 


better (judged by MAD and MSE) than any of the Holt smoothing procedures.  


However, the Trend*Seasonality (T*S) model is best.   This procedure is the only 


one that takes account of the trend and seasonality in Small Engine Doctor sales.  

CASE 5-2:  MR. TUX


At last, John is able to deal directly with the strong seasonal effect in his monthly data.   Students find it interesting that in addition to using these to forecast, John's banker wants them to justify variable loan payments.


To forecast using decomposition, students see that both the C and I components must be estimated.   We like to emphasize that studying the C column in the computer printout is helpful, but that other study is needed to estimate the course of the economy over the next several months.   The computer is not able to make such forecasts with accuracy, as anyone who follows economic news well knows.


Thinking about John’s efforts to balance his seasonal business to achieve a more uniform sales picture can generate a good class discussion.   This is usually the goal of any business; examples such as boats/skis or bikes/skis illustrate this effort in many seasonal businesses.  In fact, John Mosby put a great deal of effort into expanding his Seattle business in order to balance his seasonal effect.   Along with his shirt making business, he has achieved a rather uniform monthly sales volume.

1.        The two sentences might look something like this:   A computer analysis of John 

      Mosby's monthly sales data clearly shows the strong variation by month.  I think we 
are justified in letting him make variable monthly loan payments based on the seasonal 

            indices shown in the computer printout.

2.         Since John expects to do twice as much business in Seattle as Spokane, the Seattle      

      indices he should try to achieve will be only half as far from 100 as the Spokane 

      indices, and on the opposite side of 100:


                       Spokane     Seattle



   Jan   
     
  31.4        134.3



   Feb       
  47.2        126.4


   Mar      
  88.8        105.6


   Apr      
177.9          61.1


   May    
191.8          54.1


   Jun      
118.6          90.7


   Jul       
102.9          98.6


   Aug     
128.7          85.7


   Sep         
  93.8        103.1


   Oct         
  81.5        109.3


   Nov       
  60.4        119.8


   Dec       
  77.1        111.5
3. 
  Using the sales figures for January and February of 2005, to get “average” (100%) sales



dollars, divide the actual sales by the corresponding seasonal index:



        Jan:    71,043/.314 = 226,252



        Feb:  152,930/.472 = 324,004

  Now subtract the actual sales from these target values to get the sales necessary                          

           from the shirt making machine: 



        Jan:   226,252 -   71,043 = 155,209



        Feb:  324,004 - 152,930 = 171,074
CASE 5-3:  CONSUMER CREDIT COUNSELING

Both the trend and seasonal components are important.   The trend explains about 34% percent of the total variance. 

Multiplicative Model

Data      Clients

Length    99

Fitted Trend Equation

Yt = 89.88 + 0.638*t

Seasonal Indices

 
Month    Index


    
         
         1    1.177

  
         2    1.168

   
         3    1.246

  
         4    0.997

   
         5    0.940

    
         6    1.020

     
         7    0.916

   
         8    0.951

    
         9    0.878

  
       10    1.055

  
       11    0.868

   
       12    0.783
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The number of new clients tends to be relatively large during the first three months 

of the year.  
Forecasts

    Month         Forecast

Apr/2003         153.207

May/2003        145.121

Jun/2003          158.062

Jul/2003           142.440

Aug/2003         148.560

Sep/2003          137.749

Oct/2003          166.161

Nov/2003         137.261

Dec/2003          124.277
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There is one, possibly two, large positive residuals (irregularities) at the beginning of the series but there are no significant residual autocorrelations.  
CASE 5-4:  MURPHY BROTHERS FURNITURE

1.       An adequate model was found using Holt’s linear exponential smoothing.  

Smoothing Constants

Alpha (level)     0.980
Gamma (trend)  0.025
Accuracy Measures

MAPE        1.1

MAD        76.2
  MSD   11857.8
Forecasts

 Month       Forecast    

Jan/2002       8127.8  

Feb/2002       8165.1

Mar/2002      8202.4  

Apr/2002      8239.7  

May/2002     8277.0  

Jun/2002       8314.2  

Jul/2002        8351.5  

Aug/2002      8388.8  

Sep/2002       8426.1  
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2.          Forecasts and Actuals
   Month    Forecast    Actual

Jan/2002      7453.2      7120

Feb/2002     7462.5      7124

Mar/2002    8058.7      7817

Apr/2002    7873.1       7538

May/2002   8223.5       7921

Jun/2002     8140.9       7757

Jul/2002      8308.8       7816

Aug/2002    8611.1       8208

Sep/2002     8368.2      7828


Holt’s linear smoothing was adequate for the seasonally adjusted data, but the 

forecasts above are uniformly above the actual values for the first nine months of


2002.  

3.          Using the same procedure as in 2, the forecast for October, 2002 is 8609.2.

4.          The pattern for the three sets of data shows a trend and monthly seasonality.    

CASE 5-5:  AAA WASHINGTON

1.  
An additive and a multiplicative decomposition perform equally well.  The multiplicative



decomposition is shown below.  
Multiplicative Model

Data      Calls

Length    60

NMissing  0

Fitted Trend Equation

Yt = 21851 - 17.0437*t

Seasonal Indices

 
Month    Index

    
        1    0.937

    
        2    0.922

  
        3    0.972

  
        4    0.963

     
        5    0.925

    
        6    1.016

    
        7    1.063

    
        8    1.094

    
        9    1.094

      11    1.025

   
      12    0.936
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Accuracy Measures:
MAPE    4          MAD    814          MSD    1276220
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2.
Decomposition analysis works pretty well for AAA Washington data.  There is a


slight downward trend in emergency road service call volume with a pronounced


seasonal component.  Volume tends to be relatively high in the summer and 


early fall.  There is significant residual autocorrelation at lag 1 (see plot below) so


not all the association in the data has been accounted for by the decomposition.
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CASE 5-6:  ALOMEGA FOOD STORES

The sales data for the Alomega Food Stores case is subjected to a multiplicative  decomposition procedure in this case.  A trend line is first calculated with the actual data plotted around it (using MINITAB).  Students can project this line into future months for sales forecasts, although, as the case suggests, accurate forecasts will not result:  The MAPE using only the trend line is 28%.

A plot of the seasonal indices from the MINITAB output is shown below..  Students can summarize the managerial benefits to Julie from studying these values.  As noted in the case, the MAPE drops to 12% when the seasonal indices along with the trend are used.
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Finally, a 12-month forecast is generated using both the trend line and the seasonal indices.  The forecasts seem reasonable.  

   Month       Forecast

Jan/2007        785348

Feb/2007       326276

Mar/2007      585307

Apr/2007      391827

May/2007     558299

Jun/2007       453257

Jul/2007        520615

Aug/2007      319029

Sep/2007       614997

Oct/2007       394599

Nov/2007      377580

Dec/2007      235312

There are no significant residual autocorrelations.

Although more a management concern than a forecasting one, the attitude of Jackson Tilson in the case might generate a discussion that ties the computer assisted forecasting process into the real-life personalities of business associates.  Although increasingly unlikely in the business setting, there are still those whose backgrounds do not include familiarity with computer based data analysis.  Students whose careers will be spent in business might benefit from a discussion of the human element in the management process.

CASE 5-7:  SURTIDO COOKIES

1.
Multiplicative Model
Data      SurtidoSales

Length    41

NMissing  0

Fitted Trend Equation

Yt = 907625 + 4736*t

Seasonal Indices

 Month      Index

          1      0.696

          2      0.546

          3      0.517

          4      0.678

          5      0.658

          6      0.615

          7      0.716

  
          8      0.567

 
          9      1.527

   
        10      1.664

        11      1.988

 
        12      1.829
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   Month       Forecast

Jun/2003        680763

Jul/2003         795362

Aug/2003       633209

Sep/2003      1710846

Oct/2003      1872289

Nov/2003     2246745

Dec/2003      2076183
2.
The linear trend in sales has a slight upward slope.  The seasonal indices show that 


cookie sales are relatively high the last four months of the year with a peak in 


November and relatively low the rest of the year.  
3.
The residual autocorrelation function is shown below.   There are no significant

residual autocorrelations. 
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The multiplicative decomposition adequately accounts for the trend and seasonality 

in the data.  The forecasts are very reasonable.  Jame should change his thinking

about the value of decomposition analysis.

CASE 5-8:  SOUTHWEST MEDICAL CENTER  
1.
Decomposition of a time series involves isolating the underlying components

that make up the time series.  These components are the trend or trend/cycle


(long term growth or decline), the seasonal (consistent within year variation


typically related to the calendar) and the irregular (unexplained variation).  

2.
The results and forecasts from a multiplicative decomposition and an additive

decomposition are nearly the same (apart from the seasonal indices being 


either multiplicative or additive).  For the purposes of this case, either 


can be considered.  The results from a multiplicative decomposition follow.


Multiplicative Model

Data      Total Visits

Length    114

NMissing  0

Fitted Trend Equation

Yt = 955.6 + 4.02*t

Seasonal Indices

 Month      Index

   
          1      0.972

          2      1.039

 
          3      0.943

   
          4      0.884

     
          5      1.039

  
          6      0.935

 
          7      1.043

  
          8      1.033

 
          9      0.995

  
        10      1.007

   
        11      1.091

  
        12      1.019
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Forecasts

     Month     Forecast

   Month     Forecast
          
Mar/2004          1479             Sep/2004          1401

             Apr/2004         1469              Oct/2004          1502

            May/2004         1419             Nov/2004          1367

              Jun/2004         1440              Dec/2004         1284

               Jul/2004         1564               Jan/2005         1514

             Aug/2004         1464               Feb/2005        1367

3.
There is a distinct upward trend in total visits.  The seasonal indices show that 

visits in December (4th month of fiscal year) tend to be relatively low and visits


in July (11th month of fiscal year) tend to be relatively high.  

4.
The residual autocorrelation function is shown below.
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There are significant residual autocorrelations.  The residuals are far from random

The forecasts may be reasonable given the last three fiscal years of data.  However, looking at the time series decomposition plot in 2, it is clear a decomposition analysis

is not able to describe the middle two or three fiscal years of data.  For some 


reason, visits for these fiscal years, in general, appear to be unusually high.  A 


decomposition analysis does not adequately describe Mary’s data and leaves her


perplexed.  
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