
     


    CHAPTER 9

            BOX-JENKINS (ARIMA) METHODOLOGY
ANSWERS TO PROBLEMS AND CASES
1. 
a.  0 ( .196

    
        b.  Series is random


            c.  Series could be a stationary autoregressive process or series could be non-stationary.

     Interpretation depends on how fast the autocorrelations decay to 0.  


            d.  Seasonal series with period of 4

2.
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 1       32.5    35.000  -2.500


 2       36.6    34.375   2.225


 3       33.3    36.306  -3.006


 4       31.9    33.581  -1.681
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5 = 35 + .25(-1.681) - .3(-3.006) = 35.482
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3.  
a.  
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4.  
       a.  Model      Autocorrelations    Partial Autocorrelations


       AR  
    die out                   cut off

                   MA              cut off                    die out 
                  ARIMA        die out                    die out 
5.  
a.  MA(2)

  
          b.  AR(1)


            c.  ARIMA(1,0,1)
6.
a.  Model is not adequate.  

b.  Q = 44.3   df = 11    α = .05

                 Reject H0 if 
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     Since Q = 44.3 > 19.675, reject H0 and conclude model is not adequate.  Also,


     there is a significant residual autocorrelation at lag 2.  Add a MA term to the 


     model at lag 2 and fit an ARIMA(1,1,2) model.  

7.
a.  Autocorrelations of original series fail to die out, suggesting that demand is 

     non-stationary.  Autocorrelations for first differences of demand, do die 
     out (cut off relative to standard error limits) suggesting series of first 
     differences is stationary.   Low lag autocorrelations of series of second 
     differences increase in magnitude, suggesting second differencing is too 
     much.  A plot of the demand series shows the series is increasing linearly in 
     time with almost a perfect (deterministic) straight line pattern.  In fact, a 
     straight line time trend fit to the demand data represents the data well as 
     shown in the plot below.  
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     If an ARIMA model is fit to the demand data, the autocorrelations and  

  
     plots of the original series and the series of first differences, suggest an 

     ARIMA(0,1,1) model with a constant term might be good starting point.   The 

     first order moving average term is suggested by the significant autocorrelation 

     at lag 1 for the first differenced series.  

            b.  The Minitab output from fitting an ARIMA(0,1,1) model with a constant is

     shown below.  



[image: image12.png]ARTMA model for Demand

Final Estinates of Parameters
Type Coet  SE Coet T »
m o1 1.0021 0.0%3  10.15  0.000
Constant 0.712663  0.003837  185.74  0.000

Differencing: 1 regular difference
Humber of observations: Original series 52, after differencing S1
Residuals: 5 = 39.2257 (backforecasts excluded)

mS - 0.8005 DF - 49





      
     The least squares estimate of the constant term, .7127, is virtually the same as 

     The least squares slope coefficient in the straight line fit shown in part a.  Also, 

     The first order moving average coefficient is essentially 1.   These two results 

      
     are consistent with a straight line time trend regression model for the original data.

           
     Suppose 
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 is demand in time period t.  The straight line time trend regression

           
     model is:  
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.   The latter is an ARIMA(0,1,1) model with a constant

           
     term (the slope coefficient in the straight line model) and a first order moving

           
     average coefficient of 1.   

           
     There is some residual autocorrelation (particularly at lag 2) for both the straight 

           
     line fit and the ARIMA(0,1,1) fit, but the usual residual plots indicate no other 

           
     problems.

           c.  Prediction equations for period 53.


    Straight line model:   
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    ARIMA model:  
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           d.  The forecasts for the next four periods from forecast origin t = 52 for the 

    ARIMA model follow.  

            


[image: image19.png]Forecasts from period 52
95 Percent Linits

Period Forecast. Lover Upper
53 57.6633 55.5093 59.4173
54 58.3760 56.6219 60.1300
55 59,0886 57.3345 60.8426

56 59,8013 58.0473 61,5553





     These forecasts are essentially the same as the forecasts obtained by 

     extrapolating the fitted straight line in part a.  
8.   
Since the autocorrelation coefficients drop off after one time lag and the partial 


autocorrelation coefficients trail off, an MA(1) model should be adequate.   The best 


model is
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                  The forecast for period 127 is
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127 = 56.1853 + 0.7064)(-5.4) = 52.37

           The critical 5% chi-square value for 10 df is 18.31.    Since the calculated chi-square 

Q for the residual autocorrelations equals 7.4, the model is deemed adequate. 

           The autocorrelation and partial autocorrelation plots for the original series follow.









ARIMA model for Yt

Final Estimates of Parameters

Type              Coef        StDev            T

MA   1      -0.7064       0.0638    -11.07

Constant   56.1853       0.5951     94.42

Mean        56.1853       0.5951

Number of observations:  126

Residuals:    SS = 1910.10  (backforecasts excluded)

                    MS =   15.40  DF = 124

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag                  12                   24                    36                    48

Chi-Square    7.4(DF=10)   36.4(DF=22)   64.8(DF=34)   80.5(DF=46)


              

   95 Percent Limits

Period      Forecast         Lower        Upper       

  127         52.3696      44.6754      60.0637

  128         56.1853      46.7651      65.6054

  129         56.1853      46.7651      65.6054
9.   
Since the autocorrelation coefficients trail off and the partial autocorrelation 


coefficients cut off after one time lag, an AR(1) model should be adequate.   

The best model is
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The forecast for period 81 is
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81 = 109.628 - 0.9377(85) = 29.92
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ARIMA model for Yt

Final Estimates of Parameters

Type               Coef       StDev             T

AR   1        -0.9377      0.0489     -19.17

Constant   109.628         0.611    179.57

Mean         56.5763      0.3151

Number of observations:  80

Residuals:    SS = 2325.19  (backforecasts excluded)

            
       MS =   29.81  DF = 78

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag                  12                    24                    36                    48

Chi-Square   24.8(DF=10)   39.4(DF=22)   74.0(DF=34)   83.9(DF=46)

            
                          95 Percent Limits

Period      Forecast        Lower        Upper       
   81         29.9234        19.2199      40.6269

   82         81.5688        66.8957      96.2419

   83         33.1408        15.7088      50.5728


            The critical 5% chi-square value for 10 df's is 18.31.    Since the calculated chi-square 

Q for the residual autocorrelations equals 24.8, the model is deemed inadequate.   An 


examination of the individual residual autocorrelations suggests it might be possible to 


improve the model by adding a MA term at lag 2.  
10. 
As can be seen below, the autocorrelations for the original series are slow to die out.  This


behavior indicates the series may be non-stationary.   The autocorrelations for the 


differenced data cut off after lag 1 and the partial autocorrelations die out.  This suggests


an ARIMA(0,1,1) model.  When this model is fit (see the computer output below), there 


are no significant residual autocorrelations and the residual plots look good.  The 


forecasting equation from the fitted model is   
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                 The forecast for period 81 is
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ARIMA model for Yt

Final Estimates of Parameters

Type             Coef       StDev           T

MA   1     -0.3714      0.1052     -3.53

Differencing: 1 regular difference

Number of observations:  Original series 80, after differencing 79

Residuals:    SS = 10637.3  (backforecasts excluded)

                   MS =   136.4  DF = 78

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag                 12                    24                     36                    48

Chi-Square    9.2(DF=11)   14.1(DF=23)   28.6(DF=35)   39.2(DF=47)

            
                          95 Percent Limits

Period      Forecast        Lower        Upper      

  81           268.741      245.848    291.635

  82           268.741      229.885       307.597

  83           268.741      218.787       318.695

            The critical 5% chi-square value for 11 df's is 19.68.    Since the calculated 

chi-square Q for the residual autocorrelations equals 9.2, the model is deemed adequate. 

11. 
The slow decline in the early, non-seasonal lags indicates the need for regular 


differencing.
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The peaks at lags 12 and 24 are apparent.   The seasonal autocorrelation 

coefficients seem to be decaying slowly.  Seasonal differencing is necessary.   

The autocorrelation coefficient and partial autocorrelation coefficient plots for the 

regular and seasonal differenced data are shown on the next page.











Concentrating on the non-seasonal lags, the autocorrelation coefficients drop off 


after one time lag and the partial autocorrelation coefficients trail off, so a regular

moving average term of order 1 is indicated.  Concentrating on the seasonal lags 

(12 and 24), the autocorrelation coefficients cut off after lag 12 and the partial 

autocorrelation coefficients trail off, so a seasonal moving average term of order 12


is suggested.  An ARIMA(0,1,1)(0,1,1) model for Yt is identified.  
Final Estimates of Parameters

Type               Coef       StDev           T

MA     1      0.7486      0.0742     10.09

SMA 12      0.8800      0.0893      9.85

Differencing: 1 regular, 1 seasonal of order 12

Number of observations:  Original series 96, after differencing 83

Residuals:    SS =  5744406210  (backforecasts excluded)

       MS =    70918595  DF = 81

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag                  12                   24                    36                    48

Chi-Square    3.0(DF=10)   19.3(DF=22)   23.0(DF=34)   25.1(DF=46)

  95 Percent Limits

Period      Forecast        Lower        Upper       
  97          163500        146991       180009

  98          158300        141277       175322

  99          177084        159562       194606

100          178792        160785       196798

101          188706        170227       207185

102          184846        165907       203785

103          191921        172532       211310

104          188746        168918       208574

105          185194        164936       205451

106          187669        166991       208348

107          188084        166993       209175

108          221521        200025       243016

            The critical 5% chi-square value for 10 df's is 18.31.    Since the calculated 

chi-square Q for the residual autocorrelations equals 3, the model is deemed adequate. 

12.  
a.  See part b.  
    b.  The autocorrelation coefficient plot below indicates that the data are

     non-stationary.  Therefore, the data should be first differenced.   The 

     autocorrelation coefficient and  partial autocorrelation coefficient plots for 



     the first differenced data are also shown.
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c.  There is not much going on in either the autocorrelations or partial autocorrelations


     for the differenced series.  Could make a case for a first order AR term in a model


     for the differenced data.  The results from fitting an ARIMA(0,1,1) model are shown


     below.  Successive changes are not random if an ARIMA(0,1,1) model is appropriate.
ARIMA model for IBM

Final Estimates of Parameters

Type            Coef       StDev          T          P
AR   1      0.3780      0.1496      2.53     .015
Differencing: 1 regular difference

Number of observations:  Original series 52, after differencing 51

Residuals:    SS = 1710.50  (backforecasts excluded)

            

       MS =   34.21  DF = 50

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag                 12                    24                     36                   48

Chi-Square    7.3(DF=11)   15.8(DF=23)   28.5(DF=35)   38.1(DF=47)

            


           95 Percent Limits

Period     Forecast      Lower        Upper       
  53         311.560      300.094      323.026

  54         314.418      294.895      333.941

d.  The residual plots look good and there are no significant residual autocorrelations.


     There is no reason to doubt the adequacy of the model.      


e.  
[image: image36.wmf]Y
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t = Yt-1 + .378(Yt - Yt-1)

    
[image: image37.wmf]Y

ˆ

53 = Y52 + .378(Y53 - Y52)
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53 = 304 + .378(304 - 284) = 311.56


     The naïve forecast is 
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13. 
One question that might arise is should the student use the first 145 observations or 


all 150 observations.   With this many observations, it will not make much difference.  


The autocorrelation function using all the data below is slow to die out and suggests 


the DEF time series is non-stationary.  Therefore, the differenced data should be investigated. 
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The autocorrelation coefficient and partial autocorrelation coefficient plots for the first 


differenced data follow.
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It appears that the autocorrelations for the differenced data cut off after lag one 

and that the partial autocorrelations die out.  This suggests a regular MA term in a model


for the differenced data so an ARIMA(0,1,1) model is identified.  If 145 observations 

are used, the forecasting equation from the fitted model is



[image: image43.wmf]Y
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t = Yt-1  - 0.7179(t-1   


The computer output for the fitted model is given below.   


Final Estimates of Parameters

Type              Coef    SE Coef           T          P


MA   1        0.7179     0.0582    12.34    0.000


Constant  -0.00049   0.06024     -0.01   0.994


Differencing: 1 regular difference


Number of observations:  Original series 145, after differencing 144


Residuals:    SS =  917.134 (backforecasts excluded)

                               MS =  6.459  DF = 142


Modified Box-Pierce (Ljung-Box) Chi-Square statistic


Lag                  12      24       36       48


Chi-Square   12.3   29.5    57.2    66.1


DF                   10      22       34       46


P-Value     0.266  0.131  0.008  0.028


Forecasts from period 145

                     

          95% Limits


Period  Forecast    Lower     Upper  Actual

  
 146      133.815  128.832  138.797   135.2

  
 147      133.814  128.637  138.991   139.2

  
 148      133.814  128.450  139.178   136.8

  
 149      133.813  128.268  139.358   136.0

   
 150      133.813  128.092  139.533   134.4

This model fits well.  The usual residual analysis indicates no model inadequacies.  

Comparing the forecasts with the actuals for the five days from forecast origin t = 145

using MAPE gives MAPE = 1.82%.
14.
The time series plot follows.
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The sample autocorrelation and partial autocorrelation functions below suggest and 


AR(2) or, equivalently, an ARIMA(2,0,0) model.  The computer output follows along

with the residual autocorrelation function.  


Final Estimates of Parameters


Type            Coef    SE Coef           T          P


AR   1      1.4837      0.0732     20.26   0.000


AR   2     -0.7619      0.0729   -10.45   0.000


Constant   17.181       1.381    12.44    0.000


Mean        61.757       4.965


Number of observations:  90


Residuals:    SS =  14914.5 (backforecasts excluded)

                               MS =  171.4  DF = 87


Modified Box-Pierce (Ljung-Box) Chi-Square statistic


Lag                  12       24       36      48


Chi-Square   19.9    25.9   41.7    55.9


DF                    9        21      33       45


P-Value      0.018  0.209  0.142  0.128


Forecasts from period 90

                                              95% Limits


Period  Forecast     Lower      Upper    Actual

   
    91     110.333    84.665    136.001
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The forecast of 110 accidents for the 91st week seems reasonable given the history

of the series near that point.  


There is no evidence of annual seasonality in these data but since there is less


than two years of weekly observations, seasonality, if it exists, would be virtually


impossible to detect.  

15.
The time series plot that follows suggests the Price series is non-stationary.  This

is corroborated by the autocorrelations which are slow to die out.  The differenced


series should be investigated.  
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The autocorrelation function for the differenced data below suggests the 


differenced series is random.  The partial autocorrelation function for the 


differenced data has a similar appearance.  
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An ARIMA(0,1,0) model is identified for the price of corn.  For this model


a forecast of the next observation at forecast origin t is given by 
[image: image49.wmf]t

t

Y

Y

=

+

1

ˆ

.  Forecasts

two steps ahead are the same, similarly for three steps ahead and so forth.  In other


words, this model produces “flat line” forecasts whose intercept is given by 
[image: image50.wmf]t

Y

.  


So, forecasts of the price of corn for the next 12 months are all given by the last 


observation or 251 cents per bushel.  

16.  
The variation in the Cavanaugh sales series increases with the level, so a log

transformation seems appropriate.  Let 
[image: image51.wmf]t

Y

 be the natural log of sales and
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-

-

=

t

t

t

Y

Y

W

  be the seasonally differenced series.  Two ARIMA models that

represent the data reasonably well are given by the expressions 

ARIMA(0,0,2)(0,1,0)12 and ARIMA(1,0,0)(0,1,1)12.  Both models contain a

            constant term.  Another possibility is the ARIMA(0,1,1)(0,1,1)12 model (without


a constant), but the latter doesn’t fit quite as well as the former models.  The results 

for the ARIMA(1,0,0)(0,1,1)12 process are displayed below.



Fitted model:  
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Final Estimates of Parameters


Type              Coef       SE Coef          T           P


AR   1         0.5400        0.1080      5.00    0.000


SMA 12      0.8076        0.1162      6.95    0.000



Constant     0.1187        0.0060    19.70    0.000


Differencing: 0 regular, 1 seasonal of order 12


Number of observations:  Original series 77, after differencing 65
Forecasts:  Date           ForecastLnSales    ForecastSales

   Jun. 2000          5.76675          
320

   Jul.  2000          6.11484                  453
   Aug. 2000         6.40039                
602

   Sep. 2000          6.80928                  906

   Oct. 2000          7.09153                1202

   Nov. 2000         7.14969                1274

   Dec. 2000          6.85211                  946
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  The residual autocorrelation a lag 2 can be ignored or, alternatively, can fit the 

  ARIMA(0,0,2)(0,1,1)12 model.   

17.      The variation in Disney sales increases with the level, so a log transformation 

seems appropriate.  Let 
[image: image56.wmf]t

Y

 be the natural log of sales and 
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  be the 

seasonally differenced series.  Two ARIMA models that represent the data 

reasonably well are given by the representations ARIMA(1,0,0)(0,1,1)4 and 

ARIMA(0,1,1)(0,1,1)4.   The former model contains a constant.  The results for 

the ARIMA(1,0,0)(0,1,1)4 process are displayed below.  



Fitted model:  
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Final Estimates of Parameters


Type             Coef     SE Coef          T           P

                 
AR   1        0.4991      0.1164      4.29    0.000



SMA  4      0.4863      0.1196      4.07    0.000


Constant    0.0886      0.0063    14.07    0.000


Differencing: 0 regular, 1 seasonal of order 4


Number of observations:  Original series 63, after differencing 59



Forecasts:  Date      ForecastLnSales    ForecastSales        

   Q4 1995         8.25008       
       3828

  


   Q1 1996         8.12423        
       3375

   Q2 1996         8.11642                3349

   Q3 1996         8.24372                3804 

   Q4 1996         8.43698                4615
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18.       The data were transformed by taking natural logs; however, an ARIMA model 

            may be fit to the original observations.  Let 
[image: image60.wmf]t
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 be the natural log of demand

            and let 
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 be the series after taking one seasonal

            difference followed by a regular difference.  An ARIMA(0,1,1)(0,1,1)12 model

            represents the log demand series well.  The results follow.



Fitted model:  
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Final Estimates of Parameters

                      
Type              Coef     SE Coef          T           P


MA   1        0.6309      0.0724      8.71    0.000


SMA 12      0.5735      0.0849      6.75    0.000


Differencing: 1 regular, 1 seasonal of order 12


Number of observations:  Original series 129, after differencing 116


Forecasts:  Date        ForecastLnDemand     ForecastDemand        

   Oct. 1996         5.23761                          188

   Nov. 1996        5.29666                          200

   Dec. 1996         5.33704                          208
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19.
Let 
[image: image65.wmf]13
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 be the series after taking one seasonal

            difference followed by a regular difference.  Examination of the autocorrelation 

function for 
[image: image66.wmf]t

W

 leads to the identification of an ARIMA(0,1,0)(0,1,1)12 model.


The results follow.  



Fitted model:  
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Final Estimates of Parameters



Type            Coef   SE Coef          T           P



SMA  12  0.8438     0.0733    11.51    0.000



Differencing: 1 regular, 1 seasonal of order 12



Number of observations:  Original series 130, after differencing 117



Residuals:    SS =  7165296 (backforecasts excluded)

              

        MS =  61770  DF = 116



Modified Box-Pierce (Ljung-Box) Chi-Square statistic



Lag                  12        24        36         48



Chi-Square   13.2     19.3     26.2      52.6



DF                   11        23        35         47



P-Value       0.280   0.681   0.858    0.266



Forecasts from period 130

                                                            95% Limits



Period  Forecast      Lower       Upper 
  

 131      73653.4    73166.1   74140.6

   

 132      73448.7    72759.7   74137.8

 

 133      72571.8    71727.9   73415.7

  

 134      72904.3    71929.8   73878.7

 

 135      73200.8    72111.4   74290.3

 

 136      73711.5    72518.1   74905.0

   

 137      74218.7    72929.6   75507.7

  

 138      75021.6    73643.5   76399.7

  

 139      75459.7    73998.0   76921.4

  

 140      75114.5    73573.8   76655.3

   

 141      74519.0    72903.0   76134.9

  

 142      74681.4    72993.6   76369.2
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20.
The variation in Wal-Mart sales increases with the level, so a log transformation 

seems appropriate.  Let 
[image: image69.wmf]t

Y

 be the natural log of sales and 
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  be the 


seasonally differenced series.  Examination of the autocorrelation function for 
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leads to the identification of an ARIMA(0,1,0)(0,1,1)4 model.


The results follow.  



Fitted model:  
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Final Estimates of Parameters



Type          Coef     SE Coef         T           P



SMA  4  0.5249       0.1185    4.43     0.000



Differencing: 1 regular, 1 seasonal of order 4



Number of observations:  Original series 60, after differencing 55



Residuals:    SS =  0.0323112 (backforecasts excluded)

            

       MS =  0.0005984  DF = 54



Modified Box-Pierce (Ljung-Box) Chi-Square statistic



Lag                  12       24       36       48



Chi-Square   12.5    20.3    30.3    47.7



DF                   11       23       35       47



P-Value      0.327  0.626  0.697   0.445



Forecasts from period 60

            

       Forecasts



Period   LnSales      Sales

 

Q1/05   11.1671   70,764

 

Q2/05   11.2514   76,988



Q3/05   11.2408   76,176



Q4/05   11.4233   91,427



Q1/06   11.2660   78,120



Q2/06   11.3503   84,991



Q3/06   11.3397   84,095



Q4/06   11.5223 100,942
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21.
Autocorrelations and partial autocorrelations for number of severe earthquakes suggest

an AR(1) model.  
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Summary of model fit and forecasts for the next 5 years follow.  


Final Estimates of Parameters


Type            Coef    SE Coef          T           P


AR   1      0.5486       0.0845     6.49    0.000


Constant  9.0295       0.6082   14.85    0.000


Mean       20.001         1.347


Number of observations:  100


Residuals:    SS =  3624.87 (backforecasts excluded)

            
       MS =  36.99  DF = 98


Modified Box-Pierce (Ljung-Box) Chi-Square statistic


Lag                  12        24          36        48


Chi-Square   11.0     23.2      30.7      45.9


DF                   10        22         34         46


P-Value      0.358   0.388    0.631    0.477


Forecasts from period 100

                                               95% Limits


Period   Forecast     Lower     Upper  

   
  101      21.6463    9.7236   33.5691

 
  102      20.9037    7.3049   34.5026

   
  103      20.4964    6.4323   34.5605

   
  104      20.2729    6.0718   34.4741

  
  105      20.1504    5.9082   34.3925

   
  106      20.0831    5.8287   34.3376
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22.
Since the variation in the series increases with the level, a log transformation is indicated.

An examination of the autocorrelations and partial autocorrelations for LnGapSales leads


to the identification of an ARIMA(0,1,0)(0,1,1)4 model.  Summary of model fit and 


forecasts for the next 8 quarters follow.  


Final Estimates of Parameters


Type         Coef    SE Coef         T           P


SMA  4  0.2780     0.1004    2.77    0.007


Differencing: 1 regular, 1 seasonal of order 4


Number of observations:  Original series 100, after differencing 95


Residuals:    SS =  0.311695 (backforecasts excluded)

              
       MS =  0.003316  DF = 94


Modified Box-Pierce (Ljung-Box) Chi-Square statistic


Lag                   12       24        36        48


Chi-Square   14.8     19.7     24.2     27.3


DF                   11        23        35        47


P-Value      0.194   0.659   0.916   0.990


Forecasts from period 100


Period   LnGapSales    GapSales   

   
  101            8.19679          3,629

  
  102            8.23373          3,766

   
  103            8.30268          4,035

   
  104            8.51475          4,988

  
  105            8.21496          3,696

   
  106            8.25189          3,835

   
  107            8.32085          4,109

   
  108            8.53291          5,079
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23.
The long strings of 0’s (no Influenza A positive cases) of uneven lengths might create

identification and fitting problems for ARIMA modeling.  On the other hand, a simple


AR(1) model with an AR coefficient of about .8 and no constant term might provide 


reasonable one week ahead forecasts for the number of positive  cases.  These forecasts


can be generated with the understanding that any non-integer forecast less than 1 is set 


to 0 and any non-integer forecast greater than 1 is rounded to the closest integer.  

CASE 9-1:  RESTAURANT SALES

1. & 2. & 3.  
AR(1) model is appropriate.  See summary, forecasts and actuals below.

Final Estimates of Parameters


Type            Coef    SE Coef          T          P


AR   1      0.5997      0.0817     7.34    0.000


Constant  1921.7        100.2    19.18   0.000


Mean       4800.8        250.3


Number of observations:  104


Residuals:    SS =  105964742 (backforecasts excluded)

              
       MS =  1038870  DF = 102


Modified Box-Pierce (Ljung-Box) Chi-Square statistic


Lag                 12        24         36       48


Chi-Square    8.9     24.5      36.8    48.5


DF                  10        22        34        46


P-Value      0.545   0.322   0.342   0.372


Forecasts and actuals for first four weeks in January 1983:

                   
                          95% Limits


Period    Forecast       Lower     Upper    Actual

   
  105       3249.49    1251.36   5247.62       2431

  
  106       3870.48    1540.58   6200.38       2796

   
  107       4242.89    1804.68   6681.10       4432

   
  108       4466.23    1990.23   6942.23       5714

Forecasts are too high for first two weeks of January 1983 and too low for next


Two weeks.  Note however, that actual sales fall within the 95% prediction


interal limits for each of the four weeks.  

4.  
The best model in Chapter 8 for the original Restaurant Sales data is an autoregressive

model with an added dummy variable to represent the period during the year when


Marquette University is in session.  So, because of the additional dummy variable, this


model fits the data better than the AR(1) model in part 1.  If the dummy variable were not


present, the two models would be the same.  Consequently, we would expect better 


forecasts with the AR + dummy variable model than with the simple AR model. 


Regardless, however, if forecasts are compared to actuals from forecast origin 104 (last


week in 1982), the usual measures of forecast accuracy (RMSE, MAPE, etc.) are likely

to be relatively large since a large portion of the variation in sales is not accounted for


by the AR + dummy variable model.  

5.
At the very least the parameters in the AR(1) model should be re-estimated if the 


new data are combined with the old data.  A better approach is to combine the data


and the go through the usual ARIMA model building process again.  It may be the


combined data suggest the form of the ARIMA has changed.  In this case, an AR(1)

is still appropriate when the new data are combined with the old data.  
CASE 9-2:  MR. TUX

1.         Box-Jenkins ARIMA models account for the autocorrelation in the observed series using


possibly differenced data, lagged dependent variables and current and previous errors.  


There are no potential causal (exogenous) independent variables in these models so they

are often difficult to explain to management.  Best to demonstrate the results.  

2.        
Autocorrelation and partial autocorrelation plots for the regular and seasonally                   

           
differenced data suggest a non-seasonal AR(2) term (the partial autocorrelations cut


off after lag 2 and the autocorrelations die out).  No seasonal MA or AR terms should 

be included.  However, here is a case where, say, the ARIMA(2, 1, 0)(0, 1, 0)12 

model is more complex than necessary and a much simpler model works well.  A time
 
series plot of the seasonally differenced Mr. Tux data is shown below along with the
 
sample autocorrelation function for these differences.  
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            It is evident an ARIMA(0, 0, 0)(0, 1, 0)12 model of the form 
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            provide a good fit to the Mr. Tux  data.    

3.         To fit the model 
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 to the Mr. Tux data, simply set 
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mean of the seasonal differences.  Here 
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.  Since the residuals from this model                                                                         
differ from the seasonal differences by the constant 
[image: image84.wmf]174

,

32

ˆ

0

=

w

, the residual 
autocorrelation function will be identical to the autocorrelation function for the seasonal 
differences shown in part 2.  The forecasting equation is simply 
[image: image85.wmf]12

174

,

32

ˆ

-

+

=

t

t

Y

Y

.  

Setting t = 97 through t = 108, we have the forecasts for the 12 months of 2006:  
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The sales forecasts for 2006 are obtained by adding 32,174 to the sales for 

          
each of the 12 months of 2005.  

CASE 9-3:  CONSUMER CREDIT COUNSELING

2.
The autocorrelation function plot below indicates that the data are non-stationary.  
  
The autocorrelations are slow to die out.  In addition, there is a spike at lag 12 and a 


smaller spike at lag 24 indicating some seasonality.  
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The autocorrelation functions for the differenced series (DiffClients), the seasonally


differenced series (Diff12Clients) and the series with one regular and one seasonal


difference (DiffDiff12Clients) follow.  
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Relative to the autocorrelations for DiffClients and Diff12Clients, the autocorrelations


for DiffDiff12Clients are much more pronounced, indicating one regular difference and 


one seasonal difference is too much.  The autocorrelations for Diff12Clients are the 


cleanest with a significant spike at lag 12 and a slightly smaller spike at lag 24.  This 


autocorrelation pattern suggests an ARIMA(0,0,0)(0,1,1)12 or an ARIMA(0,0,0)(1,1,0)


model.  The former model is the better choice.  Summary results and forecasts follow.


Final Estimates of Parameters

Type            Coef    SE Coef         T           P


SMA  12  0.4614      0.1055    4.37    0.000

Differencing: 0 regular, 1 seasonal of order 12


Number of observations:  Original series 99, after differencing 87


Residuals:    SS =  61091.9 (backforecasts excluded)

                               MS =  710.4  DF = 86


Modified Box-Pierce (Ljung-Box) Chi-Square statistic


Lag                  12        24        36         48


Chi-Square   10.9     20.3     30.8     37.4


DF                   11        23        35        47


P-Value       0.452   0.623   0.669   0.842


Forecasts from period March 1993

                                                     95% Limits

    
    Period     Forecast     Lower      Upper  


Apr 1993     123.181    70.931   175.431


May 1993    122.960    70.710   175.210


Jun 1993      140.803    88.553   193.053


Jul 1993       150.944    98.694   203.194


Aug 1993     140.056    87.806   192.306


Sep 1993      134.285    82.035   186.535


Oct 1993      146.517    94.267   198.767


Nov 1993     146.953    94.703   199.203


Dec 1993      126.243    73.993   178.493

CASE 9-4:  THE LYDIA E. PINKHAM MEDICINE COMPANY

1.  
The forecast for 1961 using the AR(2) model is 1290.  The revised error 



measures are:




 MAD = 114     MAPE = 7.1%   
2.  

The results from fitting an ARIMA(1,1,0) model, one step ahead forecasts and 


actuals follow.

Final Estimates of Parameters


Type       Coef    SE Coef         T           P


AR   1  0.4551      0.1408    3.23    0.002


Differencing: 1 regular difference


Number of observations:  Original series 42, after differencing 41


Residuals:    SS =  2139107 (backforecasts excluded)

                               MS =  53478  DF = 40


Modified Box-Pierce (Ljung-Box) Chi-Square statistic


Lag                 12         24          36     48


Chi-Square    5.5      22.1      25.3       *


DF                  11        23          35       *


P-Value     0.905    0.514     0.885      *


One step ahead forecasts from 1948


Period    Actual    Forecast     Error

  
  1949       1984          1905         79

   
  1950       1787          2018      -231


  1951       1689          1697          -8


  1952       1866          1644       222


  1953       1896          1947        -51


  1954       1684          1910      -226


  1955       1633          1588         45


  1956       1657          1610         47


  1957       1569          1668       -99


  1958       1390          1529     -139


  1959       1397          1309        88


  1960       1289          1400     -111


The forecasting equation is  
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Comparing the forecasting equation for the ARIMA(1,1,0) model with the forecasting


equation for the AR(2) model given in the case, we see the two equations are very 


similar and, consequently, would expect the one step ahead forecasts and forecast


errors to be similar.  The error measures for ARIMA(1,1,0) forecasts are




MAD = 112     MAPE = 6.9%   


the same as those for the AR(2) model.  The choice of one model over the other depends


upon whether one believes the sales series in non-stationary or “nearly” non-stationary.  
3.    
This question is intended to stimulate thinking about technological advances in 

            products (such as the automobile) which could affect sales versus fairly standard 



products (such as copper) whose demand may be impacted by technological 



advances which require them 
(such as wiring). There are no right or wrong 



answers here--just some that are better than others.

CASE 9-5: CITY OF COLLEGE STATION

1. & 2.  
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Fitted model:   
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Model fits well and forecasts seem very reasonable. 

CASE 9-6: UPS AIR FINANCE DIVISION

1.  
ARIMA(0,1,0)(0,1,1)12 model for Funding
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Fitted model:  
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A constant term is not required with a regular and a seasonal difference.  

2.  
The model in part 1 is adequate.  The Ljung-Box chi-square statistics show no 

significant autocorrelation.  The residual autocorrelations and residual plots 

below confirm the model is adequate.  (There is one large residual in period 49.)
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3.  
The forecasts follow.  
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95 Percent Linits

Period Forecast Lover Upper
121 26.7776 26.0108 27,5494
122 27.6394 26,5549 28.7239
123 28.3677 27.0395 29,6959
124 28.9962 27.4626 30.5299
125 30,4993 28.7845 32.2140
126 32.9810 3L.1027 34.8594
127 33.8021 3L.7733 35.8310
128 33.5529 313840 35.7219
129 31,5821 29.2816 33.8826
130 30,6697 28,2447 33.0945
131 30,4889 27,9455 33.0322

132 31.4688 28,8124 341252




CASE 9-7: AAA WASHINGTON


The results from fitting an ARIMA(0,0,1)(0,1,1)12 model and forecasts follow. 
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Fitted model:  
[image: image102.wmf]12

1

13

12

1

8515

.

56

.

ˆ

-

-

-

-

-

-

+

+

-

+

=

t

t

t

t

t

t

t

Y

Y

Y

Y

e

e

e



The Ljung-Box chi-square statistics show no significant autocorrelation.  

The residual autocorrelations are shown below.   The residual plots look good.

The model is adequate.  
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CASE 9-8: WEB RETAILER  
1.
Results from fitting an ARIMA(0,1,0)(0,0,1)12 model to the Contacts data follows.

Final Estimates of Parameters


Type             Coef    SE Coef          T           P


SMA  12  -0.6376      0.3022    -2.11    0.046


Differencing: 1 regular difference


Number of observations:  Original series 25, after differencing 24


Residuals:    SS =  202359762350 (backforecasts excluded)

            
       MS =  8798250537  DF = 23


Modified Box-Pierce (Ljung-Box) Chi-Square statistic


Lag                  12    24    36   48


Chi-Square   10.2      *      *     *


DF                   11      *      *     *


P-Value      0.513      *      *     *


This model was suggested by an examination of the plots of the autocorrelation and

partial autocorrelation functions for the original series and the first differenced series. 


Another potential model is an ARIMA(1,0,0)(0,0,1)12 model. But if this model is fit to 


the data, the estimate of the autoregressive parameter turns out to be very nearly 1, 

confirming the choice of the initial ARIMA(0,1,0)(0,0,1)12.   
2.
The model in part 1 is adequate.  The is no residual autocorrelation and the residual plots


that follow look good.  
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3.
Forecasts from period 25

      
                                     95% Limits


Period  Forecast       Lower       Upper  

  
      26    426280     242397     610163

  
      27    492809     232759     752859

 
      28    527275     208780     845770

   
      29    535656     167890     903422

  
      30    545614     134439     956789

 
      31    692161     241741   1142580

  
      32    554640       68131   1041149

   
      33    494570     -25530    1014669

   
      34    484265     -67384    1035914

   
      35    471355    -110135   1052844

  
      36    462995    -146876   1072867

   
      37    491232    -145757   1128222
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The pattern of the forecasts is reasonable but the forecast of the seasonal peak in 


December (recall this series starts in June) is very likely to be much too low.  The 


actual December peak may be captured by the 95% prediction limits but, because of


the small sample size, these limits are wide.  The lower prediction limit is even 


negative for some lead times.   

4.
The sample size in this case is small.  With only two years of monthly data, it is 


difficult to estimate the seasonality precisely.  Although an ARIMA model 


does provide some insights into the nature of this series, another modeling approach


may produce more readily acceptable forecasts.  
CASE 9-9: SURTIDO COOKIES  

1.
Results from fitting an ARIMA(0,0,0,)(0,1,1)12 model to Surtido cookie sales follow.

Final Estimates of Parameters


Type            Coef    SE Coef         T          P


SMA  12  0.7150      0.1910    3.74    0.001


Differencing: 0 regular, 1 seasonal of order 12


Number of observations:  Original series 41, after differencing 29


Residuals:    SS =  650837704391 (backforecasts excluded)

              
       MS =  23244203728  DF = 28


Modified Box-Pierce (Ljung-Box) Chi-Square statistic


Lag                  12        24     36     48


Chi-Square    7.4      14.2       *      *


DF                  11         23       *      *


P-Value     0.770     0.921      *      *


Cookie sales have a strong and quite consistent seasonal component but with 


little or no growth.  Following the usual pattern of looking at autocorrelations 


and partial autocorrelations for the original series and its various differences, the 



best patterns for model identification appear to be those for the original series and 


the seasonally differenced series.   In either case, a seasonal moving average term of


order 12 is included in the model to accommodate seasonality and can be deleted if


non-significant.  Fitting an ARIMA(1,0,0)(0,0,1)12 model gives an estimated


autoregressive coefficient of about .9, suggesting perhaps a model with a regular 


difference, residual autocorrelations and unattractive forecasts.  This line of


inquiry is not useful.  The ARIMA model above involving the seasonally 


differenced data fits well and, as we shall see, produces reasonable forecasts.     
2.
As demonstrated by the residual autocorrelation function and the residual plots

below, the ARIMA(0,0,0,)(0,1,1)12 model is adequate. 
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3.
The forecasts for the next 12 months follow.  Judging from the time series plot, 


they seem very reasonable. 

Forecasts from period 41

                                                 95% Limits


Period     Forecast     Lower       Upper  

   
      42       627865    328983     926748

    
      43       721336    422453   1020219

   
      44       658579    359696     957461

    
      45     1533503  1234620   1832386

    
      46     1628889  1330007   1927772

    
      47     2070440  1771557   2369323

   
      48     1805503  1506620   2104385

    
      49       778148    479265   1077031

   
      50       534265    235382     833148

    
      51       525169    226286     824052

    
      52       697168    398285     996051

    
      53       624876    325994     923759
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CASE 9-10: SOUTHWEST MEDICAL CENTER  

1.
Various plots follow.  Given these plots, Mary’s initial model seems reasonable.
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2.
Results from fitting an ARIMA(0,1,1)(0,1,1)12 model follow along with a residual

analysis and forecasts for the next 12 months. 

Final Estimates of Parameters


Type           Coef    SE Coef          T           P


MA   1     0.3568      0.0931     3.83    0.000


SMA  12  0.8646      0.0800   10.80    0.000


Differencing: 1 regular, 1 seasonal of order 12


Number of observations:  Original series 114, after differencing 101


Residuals:    SS =  988551 (backforecasts excluded)

              
       MS =  9985  DF = 99


Modified Box-Pierce (Ljung-Box) Chi-Square statistic


Lag                   12        24         36          48


Chi-Square   21.2      53.0      72.9       88.1


DF                   10         22         34          46


P-Value       0.020    0.000    0.000     0.000


Forecasts from period 114

                     

             95% Limits


Period    Forecast      Lower      Upper  

   
     115    1419.59    1223.70   1615.49

   
     116    1438.07    1205.16   1670.99

   
     117    1386.09    1121.28   1650.90

   
     118    1376.53    1083.27   1669.79

   
     119    1459.48    1140.30   1778.66

   
     120    1431.27    1088.12   1774.41

   
     121    1365.43      999.88   1730.98

   
     122    1456.48    1069.83   1843.14

   
     123    1324.46      917.79   1731.12

   
     124    1303.44      877.70   1729.17

  
     125    1442.69      998.71   1886.68

  
     126    1350.23      888.71   1811.74
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Collectively, the residual autocorrelations are larger than they would be for random

errors; however, they suggest no obvious additional terms to add to the ARIMA model.


Apart from the large residual at month 68, the residual plots look good.  The forecasts


seem reasonable but the 95% prediction limits are fairly wide.  

3.
Total visits for fiscal years 4, 5 and 6 seem somewhat removed from the rest of the data.


Total visit for these fiscal years are, as a group, somewhat larger than the remaining


observations.  Did something unusual happen during these years?  Was total visits 


defined differently?  This particular feature makes modeling difficult.  




CHAPTER 10
 Judgmental Forecasting and Forecast Adjustments 

ANSWERS TO PROBLEMS AND CASES

1.
The Delphi method can be used in any forecasting situation where there is little or no 

      historical data and there is expert opinion (experience) available.  Two examples might 

      be:

· First year sales for a new product

· Full capacity employment at a new plant

Potential difficulties associated with the Delphi method include:

·  Assembling the “right” group of experts.

·  Overcoming individual biases or agendas

·  Not being able to arrange timely feedback

2.
a.  Month
Averaged Forecast
                      1 
       4924.5

                      2                   5976.0
                      3                   6769.0

                      4                   4708.0

                      5                   4964.0

                      6                   6102.0

                      7                   8212.5

                      8                   6178.5

                      9                   4806.5

                     10                  4228.5


b.  Month
WtAvg Forecast

                      1 
       4721.4

                      2                   5956.8

                      3                   6731.2

                      4                   4601.2

                      5                   4991.6

                      6                   6385.2

                      7                   8362.2

                      8                   6320.4

                      9                   4596.8

                     10                  4474.2


c.  Winters’ forecasts MAPE = 9.8%, Regression forecasts MAPE = 7.7%

d.  Averaged forecasts MAPE = 7.4%, Weighted averaged forecasts MAPE = 8.8%.


     So based on MAPE, forecasts created by taking simple average of Winters’ 


     forecasts and Regression forecasts are preferred.  
CASE 10-1:  GOLDEN GARDENS RESTAURANT

1. & 2.
Sue and Bill have tackled a very tough business project: designing a restaurant 


that will succeed.  Restaurants seem to come and go on a regular basis so their 

planning efforts prior to opening are important.


They have already tried focus groups and have some ideas to add to their own. 
 
Since they have a number of "expert" friends, some way must be found to use this 


expertise.  The Delphi method suggests itself as a way to utilize their friends' 

knowledge.  A written description of the project along with the question of proper 

motif could be supplied to each of their friends, along with a request to design the 

restaurant.  These descriptions would then be mailed back to each participant with 

a request to re-design the business based on all the written replies.  This process 

could be continued until changes are no longer generated.


An optional step would then be to bring the participants together for a discussion.  


This expert focus group could argue their cases and respond to Sue and Bill's 

objections or insights. At the end of this process Sue and Bill would probably have 

a better idea of how a successful restaurant would look and could begin their project 

with more confidence.  Also, financial backers would probably be more enthusiastic 

after reviewing the extensive planning that Sue and Bill have undertaken prior to 

opening their business.

CASE 10-2:  ALOMEGA FOOD STORES

1.        The naïve forecasting model is not very accurate.  The MSE equals        

      8,648,047,253.

2.        The MSE for the multiple regression model (from the regression output)  


equals 2,097,765,646 which is quite a bit less than the naïve model.

3.        If the naïve approach had been more accurate, combining methods would have 

      been worth a try. 

4.        If Julie did combine forecasts, she should use a weighted average that definitely

            favored the multiple regression model.

CASE 10-3:  THE LYDIA E. PINKHAM MEDICINE COMPANY REVISITED
1.        These articles are more abundant than many realize. More "popular” journals, 



particularly financial markets titles such as Technical Analysis of Stocks & 



Commodities, Financial Analysts Journal, and Futures present several articles.  



In addition, the proceedings from the neural network conferences (published by 



IEEE) will usually have some business applications.   Finally, this approach is 



beginning to appear in more scholarly journals such as Management Science and 



Decision Sciences.

2.        The interested student with access to a neural network simulator should enjoy 



this assignment.  In addition to the "backpropagation" approach, students might 



try radial basis functions and least mean squares if they are available.

3.
  Model specification is as much an art as it is a science. for example, look at Case 



9-4 where the choice between ARIMA(1,1,0) and AR(2) models is not clearcut.  Neural 

            networks, however, do not require the analyst to specify the form of the 



model -- they have been called "model free" function approximators (see Bart 



Kosko, Neural Networks and Fuzzy Systems:   A Dynamical Systems Approach 



to Machine Intelligence, Prentice-Hall, 1992, for example).





CHAPTER 11
Managing the Forecasting Process 

ANSWERS TO PROBLEMS AND CASES

1.     
a.  One response:  Forecasts may not be right, but they improve the odds of being 

        
     close to right.  More importantly, if there are no agreed upon set of forecasts to 

                 drive planning, then different groups may develop own procedures to guide 

                 planning with potential chaos as the result. 



b.  One response:  Analogy—If you think education is expensive, try ignorance.  

     Having a good set of forecasts is like walking while looking ahead instead of at 

     your shoes.  Planning without forecasts will lead to inefficient operations, sub 

     optimal returns on investment, poor customer service, and so forth.


c.  One response:  Good forecasts require not only good quantitative skills, they also 

     require an in-depth understanding of the business or, more generally, the 


     forecasting environment and, ultimately, good communication skills to sell 

     forecasts to management.
CASE 11-1:  BOUNDARY ELECTRONICS

1.
This case invites students to think about how to use some of the forecasting techniques
 
discussed in Chapter 11.  Guy Preston is trying to get his managers to think about the 

long-range position of the company, as opposed to the short range thinking that most 

managers are involved in on a daily basis.  The case might generate a class discussion 

about the tendency of managers to shorten their planning horizons too much in the 

daily press of business.


Guy has asked his managers to write scenarios for the future: a worst case, a status quo, 


and a most likely scenario. His next task might be to discuss each of these three 

possibilities, and to discuss any differences of opinion that might emerge.  A second 

round of written scenarios by each participant could then follow this.

2.
The instructor should point out that the purpose of Guy's retreat is to expand the 

planning horizon of his managers.  He should be prepared to continue this effort after 

the first round of written scenarios:  it is quite possible that his team is still caught 

up in the affairs of the day and is not really engaged in long range thinking.  He should 

encourage expanded thinking after the discussion phase and try during the day to continue 

such thinking.   
3.
There are two possible benefits from Guy's retreat.  First, he may gain valuable insights 

into the company's future to use in his own long range thinking.  Second, and 

probably more important, his managers may come away with an increased 

awareness of the importance of expanding their planning horizons.  If this is true, 

the company will probably be in a better position to face the future.

CASE 11-2:  BUSBY ASSOCIATES

1.
Since Holt’s linear smoothing incorporates simple exponential smoothing as a special


case (β = 0), would expect Holt’s procedure to fit and forecast better here.


Therefore, there is no reason to consider a combination of forecasts.  Combining 


forecasts is best considered when the sets of forecasts are produced by different

procedures. 

2. 
Jill should definitely update her historical data as new data points arrive. Since she 

 
     is using a computer program to do the forecasting, there would be very little effort 

            involved in this process. Why not update and re-run every quarter for a while?  

3.
After the results for a few additional quarters (say 4) become available, the analysis


can be re-done to see if the current model is still viable.  Model parameters can be


re-estimated after each new observation if appropriate computer software is available. 
4.
Box-Jenkins ARIMA methodology is not well suited for small sample sizes and 

can be difficult to explain to a non-statistician.


This case illustrates the practical problems that are typically encountered when 


attempting to forecast a time series in a business setting.  Among the problems Jill 
encounters are:

· She chooses to forecast a national variable for which data values are available 


in the Survey of Current Business.  Will this variable correlate well with the 


actual Y value of interest (her firm's export sales)?

· Her initial sample size is only 13.     

· When she attempts to gather more data, she finds that the series underwent a definition change during the recent past, resulting in inconsistent data. She must shift her focus to another  surrogate variable.

· Her data plot indicates a bump in the data and she decides a more

         

consistent series would result if she dropped the first few data points.


A real life-forecasting project could very likely involve difficulties such as those 


Jill encountered in this case, or perhaps even more. For this reason this case is a "good


read" for forecasting students as they finish their studies since it shows that judgment 


and skill must be involved in the forecasting effort:  forecasting problems are not usually 


as clean and straightforward as textbook problems.    
CASE 11-3:  CONSUMER CREDIT COUNSELING


Students should summarize the results of the analyses of these data in the cases at the
ends of chapters 4 (smoothing), 5 (decomposition), 6 (simple linear regression), 8 (regression
with time series data) and 9 (Box-Jenkins methods).  Fits, residual analyses, and forecasts can be compared.  Regardless of the method, there is a fair amount of unexplained variation in the 

number of new clients.  This may be a situation where combining forecasts makes sense.  
CASE 11-4:  MR. TUX


We collected the data from the Mr. Tux rental shop so that real data could be used at the end of each chapter instead of contrived data.  We didn't know what would happen when we tried to forecast this variable, but we think it turned out well because no one method was superior.


The case in Chapter 11 summarizes the different ways John used to forecast his monthly sales, and asks students to comment on his efforts.  We think a key point is that a lot of real data sets do not lend themselves to accurate forecasting, and that continually trying different methods is required.   For the Mr. Tux data, there are fairly simple seasonal models (see the cases in Chapters

8 and 9) that represent the data well and provide reasonable forecasts.   

What advice should we give to John Mosby for the future?   Some suggestions to offer might include:

1. Update the data set as future monthly values become available and re-run the

most promising analyses to see if the current forecasting model is still viable.

2. Consider combining forecasts from two different methods.  

3. Try to develop a useful relationship between monthly sales and regional 

economic variables.  Perhaps the area unemployment rate or an economic activity 
index would correlate well with John's sales.  Perhaps some demographic


variables would correlate well.  If several variables were collected over the 

months of John's sales data, a good regression equation might result. 

This would allow John to understand how is sales are tied to the local 

environment.  

CASE 11-5:  ALOMEGA FOOD STORES

1.      Julie has to choose between two different methods of forecasting her company’s 

          monthly sales.  Students should review the results of these two efforts and decide 

          which offers the better choice.  We find that class presentations by student teams 

          are valuable as they move the analysis beyond the computer results to simulate 

          implementing these results in a “real” situation.  

2.      Having students, either individually or in teams, prepare a memo to Julie outlining 

          their analysis and choice of forecasting method is an alternative to class 

          presentations.  Again, the results of this case do not point to a “right” answer, but 

          rather to the necessity of choosing a forecasting method and justifying its use.  Non-

          quantitative considerations should come into play:  the fact that Julie is the first 

          female president of Alomega, that she jumped over several qualified candidates for 

          the job, and that one of her subordinates (Jackson Tilson) seems to be unimpressed 

          with both her and any computer analysis.

3.       Other forecasting methods are certainly possible in this case.  An assignment 

           beyond a consideration of choosing between decomposition and multiple 

           regression would be to find a superior forecasting method using any available 

           software.  Again, the qualitative considerations should be considered, including the 

           necessity of balancing the complexity and accuracy of a forecasting method with its 

           acceptance and use by the management team.
4.        Only if she finds two good methods.         

CASE 11-6:  SOUTHWEST MEDICAL CENTER  


Students should summarize the results of Mary’s forecasting efforts describing the fits,
residual analyses and forecasts.  Moreover, they should point out the apparent difficulty in

finding an adequate model for Mary’s total visits series.  If Mary’s data is accurate—there is no

reason for the apparent inconsistency in her time series—then it would probably be wise to 

collect another year or so of data and attempt to model the entire data set or, perhaps, just the data following fiscal year 6.  In the interim, she may have to settle for the forecasts from the 
best ARIMA model developed in Case 9-10.   
228
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